Factors affecting the pathophysiology of sepsis, an inflammatory disorder: Key roles of oxidative and nitrosative stress

Authors

  • Shikha Yadav Department of Biochemistry, IISc, Bangalore-560012
  • Taru Verma Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore-560012
  • Dipankar Nandi Department of Biochemistry, Indian Institute of Science, Bangalore-560012

Abstract

Sepsis, one of the primary causes of mortality in the intensive care units, occurs due to the host’s dysregulated immune responses to an infection. Consequently, persistent systemic inflammation along with suppressed adaptive immunity ensues, resulting in deranged metabolism, recurrent infections, tissue damage and multi-organ failure. The uncontrolled oxidative stress mediated by the imbalance between the generation of reactive oxygen species and their neutralization by the host’s antioxidant system is involved in inflammation-induced damage. The profound deleterious effects in the host range from mitochondrial dysfunction and endothelial damage to reduced cardiac output. Therefore, antioxidant therapy was actively considered to have therapeutic benefits in sepsis patients. Although some success has been obtained with the use of antioxidants in sepsis patients, considerable ambiguity persists that prevents their routine use. Another key molecule that may dictate the outcome and prognosis during sepsis is nitric oxide (NO). This pleiotropic molecule plays a central role in inflammation and in leukocyte recruitment at the site of inflammation. NO is synthesized by three different isoforms of nitric oxide synthases (NOS) and significantly high and sustained levels of NOS2 have been reported in sepsis. Abundant literature supports the protective roles of NO during sepsis; however, there is uncertainty in various reports. The administration of NO donors in clinical trials for sepsis treatment has encountered limited success. NO, during sepsis, acts like a double-edged sword: increased NO levels can result in hypotension, whereas reduced levels contribute to poor organ perfusion and an elevated susceptibility to infection. Therefore, several parameters need to be evaluated, while considering the potential of antioxidant and NO-based therapy during sepsis. 

Author Biographies

Shikha Yadav, Department of Biochemistry, IISc, Bangalore-560012

Research Scholar

Taru Verma, Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore-560012

Research Scholar

Dipankar Nandi, Department of Biochemistry, Indian Institute of Science, Bangalore-560012

Professor, Department of Biochemistry, IISc, Bangalore-560012

References

References

Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, et al. Role of Antioxidants and Natural Products in Inflammation. Oxidative medicine and cellular longevity. 2016;2016:5276130. Epub 2016/11/03. https://www.hindawi.com/journals/omcl/2016/5276130/

Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. The American journal of pathology. 2007;171(3):715-27. Epub 2007/07/21. https://doi.org/10.2353/ajpath.2007.070166

Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846-52. Epub 2002/12/20. https://doi.org/10.1038/nature01320

Weber A, Boege Y, Reisinger F, Heikenwalder M. Chronic liver inflammation and hepatocellular carcinoma: persistence matters. Swiss medical weekly. 2011;141:w13197. Epub 2011/05/11. https://doi.org/10.4414/smw.2011.13197

Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016;193(3):259-72. Epub 2015/09/29. https://doi.org/10.1164/rccm.201504-0781OC

Chatterjee S, Bhattacharya M, Todi SK. Epidemiology of Adult-population Sepsis in India: A Single Center 5 Year Experience. Indian journal of critical care medicine : peer-reviewed, official publication of Indian Society of Critical Care Medicine. 2017;21(9):573-7. Epub 2017/10/04. https://doi.org/10.4103/ijccm.IJCCM_240_17

Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862-74. Epub 2013/11/16. https://doi.org/10.1038/nri3552

Delano MJ, Ward PA. The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 2016;274(1):330-53. Epub 2016/10/27.https://doi.org/ 10.1111/imr.12499

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-10. Epub 2016/02/24.https://doi.org/10.1001/jama.2016.0287.

Perner A, Gordon AC, Angus DC, Lamontagne F, Machado F, Russell JA, et al. The intensive care medicine research agenda on septic shock. Intensive care medicine. 2017;43(9):1294-305. Epub 2017/05/14.https://doi.org/ 10.1007/s00134-017-4821-1

Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. The New England journal of medicine. 2001;344(10):699-709. Epub 2001/03/10. https://doi.org/ 10.1056/NEJM200103083441001

Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adults with septic shock. The New England journal of medicine. 2012;366(22):2055-64. Epub 2012/05/24. https://doi.org/ 10.1056/NEJMoa1202290

Ogilvie AC, Groeneveld AB, Straub JP, Thijs LG. Plasma lipid peroxides and antioxidants in human septic shock. Intensive Care Med. 1991;17(1):40-4. Epub 1991/01/01.https://doi.org/ 10.7860/JCDR/2016/19500.8384

Santos SS, Brunialti MK, Rigato O, Machado FR, Silva E, Salomao R. Generation of nitric oxide and reactive oxygen species by neutrophils and monocytes from septic patients and association with outcomes. Shock. 2012;38(1):18-23. Epub 2012/05/12.https://doi.org/ 10.1097/SHK.0b013e318257114e

Jones DP. Radical-free biology of oxidative stress. American journal of physiology Cell physiology. 2008;295(4):C849-68. Epub 2008/08/08. https://doi.org/10.1152/ajpcell.00283.2008.

Prauchner CA. Oxidative stress in sepsis: Pathophysiological implications justifying antioxidant co-therapy. Burns : journal of the International Society for Burn Injuries. 2017;43(3):471-85. Epub 2016/12/31.https://doi.org/ 10.1016/j.burns.2016.09.023

Andrades M, Ritter C, Moreira JC, Dal-Pizzol F. Oxidative parameters differences during non-lethal and lethal sepsis development. The Journal of surgical research. 2005;125(1):68-72. Epub 2005/04/20 https://doi.org/10.1016/j.jss.2004.11.008

Galley HF. Bench-to-bedside review: Targeting antioxidants to mitochondria in sepsis. Crit Care. 2010;14(4):230. Epub 2010/09/02. https://doi.org/ 10.1186/cc9098.

Fink MP. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001;17(1):219-37. Epub 2001/02/24. https://doi.org/10.1016/S0749-0704(05)70161-5

Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. The New England journal of medicine. 2001;345(8):588-95. Epub 2001/09/01. https://doi.org/ 10.1056/NEJMra002709

Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Critical care medicine. 2007;35(6):1599-608. Epub 2007/04/25. https://doi.org/ 10.1097/01.CCM.0000266683.64081.02

Rudyk O, Phinikaridou A, Prysyazhna O, Burgoyne JR, Botnar RM, Eaton P. Protein kinase G oxidation is a major cause of injury during sepsis. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(24):9909-13. Epub 2013/05/30. https://doi.org/ 10.1073/pnas.1301026110

Levy RJ, Piel DA, Acton PD, Zhou R, Ferrari VA, Karp JS, et al. Evidence of myocardial hibernation in the septic heart. Critical care medicine. 2005;33(12):2752-6. Epub 2005/12/15. https://doi.org/ 10.1097/01.CCM.0000189943.60945.77

Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. The Journal of experimental medicine. 2011;208(3):417-20. Epub 2011/03/02. https://doi.org/ 10.1084/jem.20110367

Macdonald J, Galley HF, Webster NR. Oxidative stress and gene expression in sepsis. British journal of anaesthesia. 2003;90(2):221-32. Epub 2003/01/23. https://doi.org/ https://doi.org/10.1093/bja/aeg034

Abraham E. Nuclear factor-kappaB and its role in sepsis-associated organ failure. The Journal of infectious diseases. 2003;187 Suppl 2:S364-9. Epub 2003/06/07. https://doi.org/10.1086/374750

den Hertog J, Groen A, van der Wijk T. Redox regulation of protein-tyrosine phosphatases. Archives of biochemistry and biophysics. 2005;434(1):11-5. Epub 2005/01/05. https://doi.org/ 10.1016/j.abb.2004.05.024

Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell research. 2011;21(1):103-15. Epub 2010/12/29. https://doi.org/ 10.1038/cr.2010.178

Mishra V. Oxidative stress and role of antioxidant supplementation in critical illness. Clin Lab. 2007;53(3-4):199-209. Epub 2007/04/24.

Bogdan C. Nitric oxide and the immune response. Nature immunology. 2001;2(10):907-16. Epub 2001/09/29.https://doi.org/ 10.1038/ni1001-907

Hickey MJ. Role of inducible nitric oxide synthase in the regulation of leucocyte recruitment. Clinical science. 2001;100(1):1-12. Epub 2000/12/15.https://doi.org/ 10.1042/cs1000001

Lange M, Connelly R, Traber DL, Hamahata A, Nakano Y, Esechie A, et al. Time course of nitric oxide synthases, nitrosative stress, and poly(ADP ribosylation) in an ovine sepsis model. Crit Care. 2010;14(4):R129. Epub 2010/07/07.https://doi.org/ 10.1186/cc9097

Scott JA, Mehta S, Duggan M, Bihari A, McCormack DG. Functional inhibition of constitutive nitric oxide synthase in a rat model of sepsis. American journal of respiratory and critical care medicine. 2002;165(10):1426-32. Epub 2002/05/23.https://doi.org/ 10.1164/rccm.2011144

Cobb JP. Use of nitric oxide synthase inhibitors to treat septic shock: the light has changed from yellow to red. Critical care medicine. 1999;27(5):855-6. Epub 1999/06/11.

Yadav S, Pathak S, Sarikhani M, Majumdar S, Ray S, Chandrasekar BS, et al. Nitric oxide synthase 2 enhances the survival of mice during Salmonella Typhimurium infection-induced sepsis by increasing reactive oxygen species, inflammatory cytokines and recruitment of neutrophils to the peritoneal cavity. Free Radic Biol Med. 2018;116:73-87. Epub 2018/01/09.https://doi.org/ 0.1016/j.freeradbiomed.2017.12.032

Tsukahara Y, Morisaki T, Kojima M, Uchiyama A, Tanaka M. iNOS expression by activated neutrophils from patients with sepsis. ANZ journal of surgery. 2001;71(1):15-20. Epub 2001/02/13. https://doi.org/10.1046/j.1440-1622.2001.02025.x

Christensen RD, Rothstein G. Exhaustion of mature marrow neutrophils in neonates with sepsis. J Pediatr. 1980;96(2):316-8. Epub 1980/02/01. https://doi.org/10.1016/S0022-3476(80)80837-7

Matute-Bello G, Frevert CW, Kajikawa O, Skerrett SJ, Goodman RB, Park DR, et al. Septic shock and acute lung injury in rabbits with peritonitis: failure of the neutrophil response to localized infection. American journal of respiratory and critical care medicine. 2001;163(1):234-43. Epub 2001/02/24. https://doi.org/10.1164/ajrccm.163.1.9909034

Alves-Filho JC, de Freitas A, Spiller F, Souto FO, Cunha FQ. The role of neutrophils in severe sepsis. Shock. 2008;30 Suppl 1:3-9. Epub 2008/08/16. https://doi.org/ 10.1097/SHK.0b013e3181818466.

Weiss SJ. Tissue destruction by neutrophils. The New England journal of medicine. 1989;320(6):365-76. Epub 1989/02/09.https://doi.org/ 10.1056/NEJM198902093200606

Wang L, Taneja R, Razavi HM, Law C, Gillis C, Mehta S. Specific role of neutrophil inducible nitric oxide synthase in murine sepsis-induced lung injury in vivo. Shock. 2012;37(5):539-47. Epub 2012/03/07.https://doi.org/ 10.1097/SHK.0b013e31824dcb5a.

Dal Secco D, Paron JA, de Oliveira SH, Ferreira SH, Silva JS, Cunha Fde Q. Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. Nitric oxide : biology and chemistry. 2003;9(3):153-64. Epub 2004/01/21. https://doi.org/10.1016/j.niox.2003.11.001

Sparkman L, Boggaram V. Nitric oxide increases IL-8 gene transcription and mRNA stability to enhance IL-8 gene expression in lung epithelial cells. American journal of physiology Lung cellular and molecular physiology. 2004;287(4):L764-73. Epub 2004/06/01. https://doi.org/10.1152/ajplung.00165.2004

Lamontagne F, Meade M, Ondiveeran HK, Lesur O, Fox-Robichaud AE. Nitric oxide donors in sepsis: a systematic review of clinical and in vivo preclinical data. Shock. 2008;30(6):653-9. Epub 2008/05/24.https://doi.org/ 10.1097/SHK.0b013e3181777eef

Dal-Secco D, DalBo S, Lautherbach NES, Gava FN, Celes MRN, Benedet PO, et al. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G protein receptor kinase. American journal of physiology Heart and circulatory physiology. 2017;313(1):H149-H63. Epub 2017/05/21.https://doi.org/ 10.1152/ajpheart.00052.2016

Lupp C, Baasner S, Ince C, Nocken F, Stover JF, Westphal M. Differentiated control of deranged nitric oxide metabolism: a therapeutic option in sepsis? Critical care. 2013;17(3):311. Epub 2013/06/12.https://doi.org/ 10.1186/cc12538

Ochoa JB, Udekwu AO, Billiar TR, Curran RD, Cerra FB, Simmons RL, et al. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg. 1991;214(5):621-6. Epub 1991/11/01.

Wong HR, Carcillo JA, Burckart G, Kaplan SS. Nitric oxide production in critically ill patients. Arch Dis Child. 1996;74(6):482-9. Epub 1996/06/01.

Wolkow PP. Involvement and dual effects of nitric oxide in septic shock. Inflamm Res. 1998;47(4):152-66. Epub 1998/06/17. https://doi.org/ 10.1007/s000110050309

Bhagat K, Hingorani AD, Palacios M, Charles IG, Vallance P. Cytokine-induced venodilatation in humans in vivo: eNOS masquerading as iNOS. Cardiovascular research. 1999;41(3):754-64. Epub 1999/08/06. https://doi.org/10.1016/S0008-6363(98)00249-1

Grover R, Zaccardelli D, Colice G, Guntupalli K, Watson D, Vincent JL. An open-label dose escalation study of the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine hydrochloride (546C88), in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Crit Care Med. 1999;27(5):913-22. Epub 1999/06/11.

Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med. 2004;32(1):21-30. Epub 2004/01/07. https://doi.org/ 10.1097/01.CCM.0000105581.01815.C6

Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet. 2002;360(9343):1395-6. Epub 2002/11/09. https://doi.org/10.1016/S0140-6736(02)11393-6

Downloads

Published

05-06-2019

Issue

Section

Review