Introduction

Inflammation is a cascade of host defense responses that is initiated upon recognition of irritants, pathogens and damaged host cells. Inflammation, not only acts as a self-protective host immune response to harmful stimuli but it is also essential for healing of damaged tissues and recovery of normal cellular homeostasis such as during wounds and infections. Based on the symptoms and the duration of the inflammatory responses, inflammation can be broadly classified into acute and chronic inflammation.1 Acute inflammation lasts for a few days to a week and primarily involves the following cardinal signs:

Pain: Due to the release of chemicals or inflammatory mediators that stimulate nerve endings.

Redness: Increased vasodilation and vascular permeability results in increased blood flow in the capillaries of the inflamed region.

Immobility: Due to loss of function in the inflamed region or organ.

Swelling: Due to accumulation of body fluids, immune cells and plasma proteins in the inflamed region. 

Heat: Due to increased blood flow to the affected region.

A typical example of acute inflammation is microbial infection, which is usually recognized by pattern recognition receptors present on innate immune cells. Infections are often sensed by tissue resident macrophages, which are activated upon the recognition of pathogen-associated molecular patterns and damage associated molecular patterns related to infection and host cell damage respectively. The activated TRMs further secrete inflammatory mediators and initiate a complex cascade of inflammatory responses. A variety of inflammatory mediators are secreted during the inflammation process like cytokines, chemokines, vasoactive amines, proteolytic enzymes and oxidizing molecules such as Reactive Nitrogen Species (RNS) and Reactive Oxygen Species (ROS). Inflammatory mediators act on blood vessels to induce vasodilation, vascular permeability and extravasation of leukocytes and plasma proteins. One of the immediate effects of this process is the activation of the endothelium of blood vessels and the selective extravasation of the neutrophils. Neutrophils, upon reaching the site of infection, are activated and further attempt to eradicate the infection by secreting noxious molecules such as RNS, ROS, proteinases, cathepsins etc.2 As these highly toxic molecules cannot discriminate between foreign and the host targets, collateral tissue damage is inevitable during inflammation.3
The symptoms of chronic inflammation, unlike acute inflammation, can persist from a few months to years and the escalation of symptoms may vary depending on the type of tissue. During chronic inflammation, the inflammatory cascade is not completely resolved leading to persistent tissue damage, malfunction and organ dysfunction.1 The molecular and cellular basis of chronic inflammation differs based on the type of inflamed cells and organs.4 It can either occur due to recurrent infections or exposure to low levels to toxic chemicals or due to the failure of the acute inflammatory response to completely eliminate the inflammatory stimuli, for example asthma, gout etc. Additionally, tissue damage due to persistent autoimmune responses can also lead to chronic inflammatory disorders such as type 1 diabetes, rheumatoid arthritis. While regulated inflammation is beneficial to the host, persistent inflammation can become detrimental to the host. A classic example of extensive host tissue damage due to uncontrolled inflammation is sepsis.

Sepsis, a dysregulated inflammatory disorder, is a leading cause critical illness and mortality worldwide with approximately 5.3 million deaths annually.5 In an epidemiological study on sepsis from 2006 to 2011 in India, one out of every four patients in ICU suffers from this syndrome. Sepsis-induced mortality in India ranges from 40-70%.6 Sepsis can be defined as a highly heterogeneous, complex syndrome caused by physiological, pathological and biochemical abnormalities in host response to infection. Sepsis occurs when an infection exceeds the barrier of local tissue containment and induces a series of dysregulated host immune responses. During sepsis, both the pro-inflammatory and the anti-inflammatory responses occur early and coexist simultaneously. Although, the net effect of these two competing processes is manifested predominantly by the early hyper-inflammatory responses. The expression of the genes involved in the regulation of the adaptive immune response are highly down-regulated during sepsis.7 Impaired recovery and the subsequent mortality of sepsis patients occur due to persistent inflammation-induced organ damage as well as recurrent secondary nosocomial infections.8 

The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) developed in 2016, defined sepsis as a “life threatening organ dysfunction caused by a dysregulated host immune response to an infection”. Sepsis-3 consensus, further defined organ dysfunction by an increase in the Sequential Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with in-hospital mortality greater than 10%. This score is based on six different independent scores, including respiratory, cardiovascular, hepatic, renal, coagulation and neurological systems. Sepsis-3 redefined septic shock as a subset of sepsis in which profound circulatory and metabolic disorders occur and is associated with a higher risk of mortality than sepsis alone. Clinically, patients with septic shock are on vasopressors to maintain a mean arterial pressure of 65 mmHg or greater. Additionally, the serum lactate levels are greater than 4 mmol/L (>18mg/dL) in the absence of hypovolemia with in-hospital mortality rates more than 40%.9 Along with primary defects in immune cell functions, metabolic and neurological abnormalities, altered complement activation and coagulation pathway, calcium homeostasis and redox imbalance are considered as a central hub in the pathophysiology of sepsis with pleiotropic effects and connection with various pathways. 

Sepsis is a complex heterogeneous syndrome and several factors are involved in the pathogenesis of sepsis. Due to improved antibiotic treatments, better and safer organ support and effective intensive care medicines, there is increase in survival of sepsis patients. However, there is no specific therapy to directly treat sepsis induced dysregulated host responses.10 The only food drug and administration approved drug i.e. human recombinant activated protein C, with anti-thrombotic, anti-inflammatory and profibrinolytic activity was withdrawn back due to increased risk of bleeding and no reduction in mortality rate of sepsis patients in subsequent confirmatory trials.11, 12 These observations demonstrate the complexity of this syndrome and major problems in the field. This review summarizes the roles of oxidative and nitrosative stress during sepsis.     

Oxidative stress in pathogenesis of sepsis

Results from clinical and experimental studies have demonstrated the existence of overwhelming oxidative stress in sepsis patients.13, 14 Oxidative stress results from the imbalance between the generation and participation of reactive species and the effectiveness of host antioxidant defense system to neutralize it, leading to overload of oxidants in cells. Furthermore, according to “redox hypothesis” oxidative stress is defined as reversible oxidation of intra- and extra-cellular thiols.15 RNS like nitric oxide (NO) and peroxynitrite (ONOO-) as well as ROS, such as hydrogen peroxide (H2O2), and hydroxyl radical (OH) are principal molecules involved during oxidative stress-induced cellular dysfunction.16 Under normal conditions, mitochondria are the central source of reactive species. In complex IV of the mitochondrion electron transport chain, defective reduction of O2 to H2O results into the generation of superoxide (O2-). Normally O2- is converted by manganese superoxide dismutase (SOD) to H2O2 which is further catalyzed by catalase into H2O. However, imbalance in the ratio of SOD and CAT has been associated with the oxidative stress and morbidity in sepsis patients.17 In addition, phagocytic cells also express membrane bound nicotinamide adenine dinucleotide phosphate oxidase that generates O2- and myeloperoxidase which converts H2O2 and Cl to hypochlorous acid (HOCl) and OH.16
Mitochondria are a major source of cellular ROS production and are also highly vulnerable to the rapid destruction caused by cellular oxidants leading to mitochondrial dysfunction.16, 18 Mitochondrial dysfunction is related to loss of inner membrane potential, inhibition of oxidative phosphorylation resulting into cellular energy failure. Also, it is postulated that, the impaired oxygen consumption by cells known as “cytopathic hypoxia” is responsible for the oxidative stress in sepsis patients.19 Importantly, cellular energetic failure due to mitochondrial dysfunction is associated with cytopathic hypoxia observed in critically ill septic patients. Importantly, enhanced mitochondrial biogenesis is known to improve the survival of sepsis patients.16 The pathophysiological effects of mitochondrial dysfunction occur due to cellular Adenosine Triphosphate (ATP) depletion, excessive production of ROS, release of pro-apoptotic proteins and imbalance in calcium homeostasis. The percentage of monocytes with loss of mitochondrial membrane potential is increased in sepsis patients. Also, peripheral blood mononuclear cells form septic patients showed reduction in the activities of complex I, III and IV of electron transport chain which is associated with reduced oxygen consumption by cells.16 Other than mitochondrial dysfunction-mediated host cell damage, reactive oxidants can directly attack endothelial cells leading to deterioration of endothelium. Endothelial damage can further contribute to enhanced vascular permeability, decreased colloidal osmotic plasma pressure and hypotension.20, 21 Further, oxidation-induced activation of cyclic guanosine phosphate-dependent protein kinase-1 α results into dilation of blood vessels and decreased cardiac output.22 Altogether, this process leads to lowered organ perfusion causing ischemia and multi-organ failure. As mentioned before, oxidative stress-induced mitochondrial dysfunction leads to lower levels of ATP and higher amounts of lactate. Since cardiac muscles require constant supply of ATP for ventricular contraction, lower ATP levels contribute to reduced cardiac output further potentiating hypotension and reduced organ perfusion.23 The markers of oxidative stress include decreased levels of reduced glutathione, increased protein carbonylation and increased SOD/CAT ratio, leading to accumulation of H2O2 in cells.16 
In addition, it is also reported that mitochondrial ROS can induce the production of pro-inflammatory cytokines such as IL-1β, IL-6 and TNF.24 Inflammatory cytokines such as TNFα, IL-1α, IL-1β and IL-6 produced by activated innate immune cells are also known to contribute to sepsis severity. The expression of pro-inflammatory cytokines during inflammation is regulated largely by the transcription factor Nuclear Factor (NF)-кB.25, 26 Upon recognition of stimuli, NF-кB associated IкB in cytosol is phosphorylated, ubiquitinylated and degraded. NF-кB translocates into the nucleus and binds to the specific binding sequence in the promoter region of its target genes.26 One of the crucial genes transcribed by NF-кB, which plays central role in redox regulation is Nitric Oxide Synthase 2 (NOS2). An inducible isoform of NOS expressed in variety of cells during inflammatory conditions. In addition, ROS may also regulate the functions of NF-кB, pre-dominantly by up-regulating its activity either by activating kinases (IKKs), which phosphorylates and degrade IкB or by inhibiting phosphatases, which maintains IKKs in active state.27, 28 Based on the aforementioned aspects, antioxidant therapy can be useful for treatment of sepsis. Although antioxidant therapy has shown benefits in animal models of sepsis, application in human clinical trials have not been fruitful.29 However, further studies are required to evaluate the potential of antioxidant co-therapy for treatment of sepsis, particularly antioxidants that can protect mitochondrion form oxidative stress and prevent mitochondrial dysfunction induced organ damages.  

Nitric Oxide Synthase and generation of NO during sepsis
NO is a critical molecule involved in the host immune responses and inflammation. NO being a pleiotropic molecule, governs a broad spectrum of processes, ranging from regulation of immune responses to cell-cell interaction and microbicidal functions. NO regulates the production of cytokines, differentiation, proliferation and apoptosis of immune cells.30 In addition, NO plays important roles during inflammation by mediating cell-cell interactions and regulating the expression of adhesion markers required for recruitment of leukocytes to the site of inflammation.31 Considering the diversity of functions that NO has on different cell types, it can either have cytotoxic or protective roles in the host. NO can be synthesized by three different isoforms of NO synthases (NOS) which can be broadly categorized as constitutively expressed and calcium-dependent: neuronal NOS (NOS1) and endothelial NOS (NOS3). On the other hand, inducible NOS (NOS2) is calcium-independent. 
The regulatory roles of different isoforms of Nos have been addressed during sepsis. Kinetic expression of Nos isoforms in the lung tissue of sheep infected with live Pseudomonas aeruginosa revealed lack of induction of NOS1, early and transient induction of NOS3 followed by sustained induction of NOS2.32 Also, in a rat model of Cecal Ligation Puncture (CLP)-induced sepsis, a significant increase in the NOS2-derived NO inhibits the activity of NOS3 irreversibly.33 In the Salmonella Typhimurium-peritonitis-induced model of sepsis in mice, it is observed that NOS2 is the sole isoform of Nos induced in the peritoneal cells and is required for the initiation and generation of efficient innate immune responses via early induction of cytokines and chemokines during sepsis. Profound increase in the expression of NOS2 is seen during infectious and inflammatory conditions and the protective roles of NOS2 in different models of sepsis are reported.34 Additionally, NOS2-drived NO is required for the infiltration of neutrophils to the site of infection, leading to lower spread of infection and increased survival of the mice.35 Interestingly, neutrophils from septic patients are also known to express higher transcripts of Nos2.36 However, the roles of neutrophils during sepsis are not clear. In case of neonates, neutropenia and lower neutrophil storage pool in the bone marrow is associated with higher incidences of sepsis.37 The lack of neutrophil responses at the site of infection results into higher lung tissue damage during peritonitis-induced septic shock in rabbits.38 Also, defects in the migratory ability of neutrophils correlates with sepsis severity, culminating in higher mortality.39 On the contrary, uncontrolled neutrophil activation during sepsis may lead to multi-organ failure due to inflammation-induced host tissue damage.40 Also, neutrophil-specific expression of NOS2 during CLP-induced sepsis in mice contributes to acute lung injury due to modulation of neutrophil-endothelial interactions, trans-endothelial neutrophil migration and pulmonary neutrophil infiltration.41 The above studies demonstrate the importance and diversity in the roles of neutrophils during sepsis. During sepsis, increased amounts of NO lower the neutrophil migration by inhibiting the process of rolling and adherence to the endothelium of blood vessels.42 On the other hand, NO is also reported to increase the IL8 amounts, a potent chemoattractant and an activator of neutrophils.43 These results illustrate that the functions of NOS2 may vary depending on the cellular location, temporal expression and type of inflammatory responses. During S. Typhimurium-peritonitis-induced sepsis in mice, it is seen that complete abrogation of NOS2-derived NO leads to higher liver tissue damage and drop in myocardial function. Organ protective functions of NOS2-derived NO during sepsis is further established with reduced liver damage and improved myocardial functions upon exogenous NO supplementation.35 In the field of sepsis, abundant literature centers around NO and sepsis, however, the specific roles of NO in the pathophysiology of sepsis are controversial. On the one hand, inhibition of NO, although, improved the hemodynamic parameters, it failed to improve the mortality index, whereas on the other hand NO donors improved the microcirculatory defects but lowered the blood pressure of septic patients.44 NO donors, such as Linsidomine or Molsidomine (SIN-1) are known to improve the mesenteric blood flow, cardiac index and myocardial dysfunction in fluid-resuscitated dogs during early phase of endotoxic shock.44 Cardiomyocytes show higher expression of NOS2 with increased amounts of released NO during sepsis.45 During S. Typhimurium peritonitis-induced sepsis, the lack of NOS2 leads to a significant drop in percent of ejection fraction and fractional shortening of heart functions, which was improved upon exogenous NO supplementation.35 Possibly, the targeted increase in the availability of NO during the onset of sepsis has beneficial effects on microvascular dysfunction.46
NO plays a central and a pleiotropic role in maintaining the microcirculatory integrity and function. Distraught leukocyte trafficking, activation of coagulation and endothelial damage altogether contributes to microcirculatory dysfunction during sepsis.46 The increase in plasma levels of nitrite and nitrate in sepsis patients has been observed and is implicated in destabilization of vascular hemodynamics.47-49 Importantly, cytokine-mediated vasodilation in humans is not due to NOS2 but due to the induction of tetrahydrobiopterin leading to the activation of NOS3.50 It would be relevant to mention the failure of clinical trials for the treatment of sepsis, using LNMA, the NOS inhibitor.51, 52 Later, efforts were made to improve the deranged microcirculation during sepsis by increasing the availability of NO by exogenous NO donors. Intravenous supplementation of septic shock patients with NO donors, such as nitroglycerine leads to improvements in microcirculatory defects.53 Overall, the application of NO donor during sepsis, despite lowering the blood pressure increases the organ blood flow and tissue oxygenation. In the settings of intensive care units, where continuous bedside monitoring of hemodynamic parameters are performed, low blood pressure can be treated efficaciously, logically, supporting the randomized clinical trials of sepsis patients with NO donors.44 Interestingly, a combination of NO donor to substitute for the physiological concentration of NOS3-derived NO in blood vessels and NOS2 specific inhibitor to prevent the excessive production of NO can be examined together.46 Accordingly, in S. Typhimurium infection-induced sepsis supplementation of Nos2-/- mice but not wild type C57BL/6 mice with NO donor leads to improved survival and lesser liver damage.35 
In conclusion, oxidative stress due to increased amounts of ROS and NO, play complex roles in the pathogenesis of sepsis. In addition to their rapid reactivity with cellular components, these reactive molecules can also participate in signaling and initiate a variety of inflammatory pathways. Increased amounts of ROS and the subsequent mitochondrial dysfunction can altogether lower the levels of ATP, culminating into cellular apoptosis and multi organ failure. In addition, levels of NO during sepsis are critical basically because of two reasons: First, NO regulates systemic blood circulation by regulating smooth muscle relaxation and vasodilation. Hence, excess of NO during sepsis results into hypotension and septic shock. On the contrary, NO is also crucial for maintenance of microcirculation leading to efficient tissue oxygenation and nutrient supply to tissues and organs. Secondly, NO exhibits anti-microbial effects and lowers microbial growth during infections. Therefore, during sepsis, NO exhibits heterogeneous effects and acts like a double-edged sword. On the one hand, excessive production of NO can lead to hypotension whereas lack of NO, on the other hand, can lead to poor organ perfusion and reduced resistance to infections. Thus, future trials with antioxidants and NO modulating agents will need to consider the diverse and complex roles this molecule plays. Further clinical trials evaluating the potential of antioxidant co-therapy needs to be investigated. Careful examining of the intrinsic levels of NO before and after treatment, as well as the stage of sepsis patients needs to be considered before the application of NO-modulating agents can be initiated. Studies in different in-vivo models with various parameters are necessary before the concept of antioxidant therapy or NO-modulating agents can be extended to clinical trials with sepsis patients.  
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