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Introduction
Most of the observational studies found in literature are 
cross-sectional studies. However, in clinical studies, 
researchers may confront scenarios where it is necessary 
to follow-up patients at multiple time points and assess 
outcome variables and covariates. Such study designs 
involving multiple observations over a period of time are 
categorized under the domain of longitudinal studies, in 
contrast to cross-sectional studies.1 In a cross-sectional 
study, observations for each sample are collected only 
once. Such observations may all occur at the same time 
point or at different time points across individuals. There 
is a growing interest in longitudinal studies for estimating 
and drawing inferences about changes brought about 
by targeted interventions in clinical trials and where 
patients are monitored for prolonged period such as 
in transplantation, cancer, and autoimmune diseases.

Multiple failure time (MFT) data are frequently 
encountered in subjects at risk of repeated occurrence 
of the same or different types of events and in clustered 

data structures (e.g. patients within the same hospital 
in a multicenter trial, animals within the same litter). It is 
also seen routinely in disease processes where a single 
primary endpoint may not be sufficient to measure clinical 
outcome and multiple failure measurements need to be 
considered, for example, patients with repeated events 
requiring multiple visits to the clinician. It is also seen in 
patients on prolonged treatment or in clinical trials where 
patients are monitored for the risk of occurrence of events 
during the recovery process, in spite of the treatment.2

In medical applications, failure time is attributed to the 
occurrence of a pre-specified event such as time to disease 
or symptom occurrence, recurrence, remission or death. 
An important feature of longitudinal studies is to distinguish 
datasets of events with distinct ordering from those with 
unordered datasets. Ordered multivariate failure time data 
or recurrent event time data are commonly observed in 
recurrence of tumors, epileptic seizures, asthma attacks, 
migraines, repeated episodes of infections, multiple 
infections after surgery, myocardial infarctions, injuries, 

Longitudinal research generates data with correlated measurements and clustered data structures. The main interest 
in longitudinal studies is to find the change in outcome over time and to analyze the influence of predictor variables 
on the outcome. Model-based approach is a powerful tool to integrate the multiple measurements and complexity of 
such data. Mixed effect models provide the framework to identify the role of individual differences in responses, while 
incorporating information from multifactorial measures at the individual and group levels to advance our understanding 
of the underlying components influencing response. This methodology is flexible, could be extended to different data 
patterns and computes more accurate and stable estimates. Using a multilevel modeling approach, the hierarchical 
structure can be explicitly modeled. With the availability of standard statistical software for both classical and Bayesian 
approaches, its applicability has increased in various fields such as genome-wide association studies, understanding of 
disease/recovery process, disease-marker association and behavioral studies to understand personality traits and health 
outcomes. This review seeks to focus on the methodological approaches to model multiple failure time data, conceptual 
issues, arising due to correlation, heterogeneity,  and clustering and estimation procedures. The article also emphasizes 
on their application in data analysis especially in immunology and rheumatology studies.
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and repeated admissions to the hospital. Symptoms 
developed by patients with connective tissue diseases 
are an example for unordered failure time data.3, 4

When a given subject contributes multiple events, the 
failure times are correlated within the subject. These 
events are not independent, as the occurrence of one may 
increase or decrease the risk of another event, conditional 
on given measured covariates.2 Similarly, individuals may 
be grouped at multiple levels and each level may contribute 
variables. Example of data structures with multiple levels 
are given in figure 1. Individuals within a cluster are similar 
compared to individuals from other clusters. Multiple 
repeated events and grouping at multiple levels induces 
statistical dependence between observations within 
individuals and/or clusters that may not be captured by 
covariates, violating a key assumption of independence of 
all observations. Thus, models, which compensate for the 
biases introduced by correlated data structure, should be 
used for the analysis of longitudinal data.5, 6, 7 Inferences 
based on conventional statistical methods are derived from 
survival analysis for time to the first event or overall survival 
time. These methods do not utilize the subsequent events, 
and hence, do not consider the correlation structure between 
multiple failure times in the data. The subsequent events 
provide information on the disease/recovery process, and 
are worth modelling to get a more precise understanding 
about disease management strategies. The methods of 
choice are statistical tools that analyze the association 
of outcome, treatment, and covariates with the length of 
time that account for dependency in the data. Established 
correlation models are available to fit such type of data.8, 9

The purpose of this paper is to review different 
approaches for data analysis of the subjects experiencing 
multiple failures and having a clustered data structure.

Basic aspects of longitudinal data analysis
An important aspect of failure time data is that each 
individual under study may not experience the anticipated 
event during the study period, that is, the exact failure 
time is not known. The study subject for whom no failure 
time is available is censored. If the study ends before the 
observation of the event, it is referred as right censored 
data. If the events are known to have occurred before the 
study entry, but the times of these events are unknown, 
then it is taken as left censored data.

Subjects in the study will either have an event or will be 
right censored (those who contribute to the model until the 

end of the study or withdrawal). Excluding the subjects, 
who do not experience the anticipated failure events during 
the study period, leads to loss of data and introduce bias 
due to reduced sample size. Hence, these observations are 
retained by assuming that censoring is non-informative, that 
is, event times are independent of censoring mechanism. 
However, censoring is informative when individuals are 
selectively withdrawn from the sample, because they 
are more or less likely to experience an event, such as 
dropout or death due to event process. Then the non-
informative censoring assumption is violated, and subjects 
in the sample no longer represent the study population.
The non-informative censoring is an important assumption 
required for the validity of the statistical analysis. Suitable 
modification of the methodologies is done to account for 
informative censoring mechanisms. In some patients, only 
intermittent follow-up data is available and the complete 
information from the periods between visits is not observed, 
such observations are said to be interval censored.

Another aspect is that observations are truncated. In 
truncation, subjects do not appear in the data because they 
have not been observed. Left truncation refers to a process 
when a subject is not observed from the beginning of the 
study, but only conditionally, on having survived until a later 
point in time. Exclusion of patients with short treatment 
history is considered as a left-truncated data, as inclusion 
is conditioned on length of compliance. If the entry into 
study depends on event of interest, then it is termed as 
right truncation. For example, in an AIDS outbreak study, 
patients with AIDS are recruited to assess the time from 
infection with HIV to development of AIDS, where only 
information on subjects with AIDS is available. Other 
examples include study of patients based on the registries 
like a cancer registry, where entire study population has 
already experienced the event of interest.10

In most cases, the truncation and censoring mechanisms 
are assumed to be independent of the event process.1 The 
presence of these features creates bias in data analysis 
and needs to be carefully considered and compensated, 
when constructing likelihood functions.

The goal of longitudinal studies is not only to examine 
the effects on the time until an event occurs, but also 
to assess the relationship between failure time and 
explanatory variables. Explanatory variables (also referred 
as covariates or independent variables) assess the impact 
of certain characteristics on the dependent variable, that 
is, covariates influence on the time-specific outcomes. Due 
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Figure1: Examples of hierarchical structures
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to the longitudinal feature of the data gathering process, 
some covariates may serve as time-invariant while others 
as time-varying. Time-invariant variables, which do not 
change across time, include gender, race, and other 
personality traits. Time-varying variables have values that 
change over time such as age, level of a biomarker, etc.

Event history data can be considered as a series of time 
measurements.  In each interval, we observe a response 
indicating whether an event has occurred. The underlying 
data distribution of the dependent variable has to be 
considered for appropriate model selection in model-based 
approaches. Event times are measured as a continuous 
time series or at discrete intervals. Continuous-time 

approach is adopted in the former case and discrete-time 
in the latter.1

In MFT data, some individuals have a higher risk of 
experiencing an event than the others, and this cannot be 
explained by the observed covariates alone. The presence 
of unobserved, individual-specific risk factors leads to frailty 
or unobserved heterogeneity. This needs to be accounted 
for, as it introduces systemic variability or randomness to 
each unit and violates the assumption that all subjects are 
homogenous.1, 11

Methodological approaches 
Model strategies that are commonly used to analyze 

Patients visiting the hospital are grouped at level 1 and the hospitals (multiple centers) at level 2. The hospitals that are in different cities are grouped at

level 3.
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The linear mixed model for level 1 can be represented by the equation:
Y= Xβ0 + Zβ1 + ε

where, Y= dependent variable
 X= fixed effect regressors
               β0= fixed effect parameter that is assumed to be
               the same for all individuals
               Z= random effect regressors
               β1= random effects parameter that is assumed to vary from
               individual to individual
               ε= error term 
            

This equation could be extended to categorical data, multiple explanatory 
factors, and to multiple levels by inclusion of additional terms.

Table 1: A general linear mixed model equation

longitudinal data include: marginal models, mixed effects 
models and transition models.11 Transition models are 
used when events in the disease/recovery process 
involve a finite number of states.12 When the correlation 
among the observations is not of interest, marginal 
models can be utilized. It provides estimates for the fixed 
parameters in the model, and treats the existence of any 
random parameters as a necessary ‘nuisance’, without 
providing explicit estimates for them.13 In mixed effects 
framework, both the fixed and random effects are modeled 
in the same analysis for the multiple failure data.14 As 
this type of data has both correlated observations and 
hierarchy along with variability, the model allows each 
factor to have fixed and random effect parameters.15

Classical approach
Mixed effects framework is closely related to a variety of 
model types, like the random coefficients models, random 
effects model, hierarchical or multilevel models (MLM), 
variance components models, nested models and split-
plot designs. Mixed models are used to model both linear 
and non-linear relationships between dependent and 
independent variables, and can handle both balanced and 
unbalanced design data. Continuous data are analyzed 
by linear regression model with mixed effects, and binary 
or ordinal or categorical data by logistic or multinomial 
regression model with mixed effects.5, 9, 16

A mixed effects model is an extension of the general 
linear model that can specify additional random effects 
terms (Table 1). It estimates both fixed and random effect 
features. Fixed effects give the mean of each factor level, 

which indicates the differences in the response among the 
levels or units and the random effects, their variances; 
allow both marginal and subject-specific inferences. The 
relationship between an independent and a dependent 
variable may be at a single level or multiple levels. It may 
differ between levels (random intercept) and/or by levels 
(random slope). Thus quantifying the heterogeneity at each 
level, in turn explains the hierarchical grouping of the data. 
In addition, interaction effects among the variables may be 
specified. Finally, correlations among measurements that 
are not fully described by the random intercepts and slopes 
are indicated by an error term. Thus, outcomes at the 
individual level are modeled in terms of both individual- and 
cluster-level variables, and simultaneously estimating and 
adjusting for the amount of correlation (non-independence 
due to repeated measurement on the same individual) 
present in the data. Multilevel modeling is ideal for modeling 
processes where variables at one level influence those at 
another level; it models the effects of group-level predictors 
while accounting for unobserved group and individual 
characteristics. Furthermore, these models allow varying 
number of subjects within each cluster as they make no 
assumption regarding cluster sample size.5, 6

To run a mixed effects model, the user must specify the 
variables with fixed and random effects, the nature of 
the hierarchy, and model selection.  For each factor or 
explanatory variables, fixed effects are considered if it 
affects the average responses of all the subjects. Presence 
of unobserved heterogeneity in the variables contributes to 
the random effects.17 Hence, differentiating the fixed and 
random explanatory variables is important.
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Fixed effect parameters for a mixed model are interpreted 
based on the nature of the explanatory variables. Fixed 
coefficients that have a corresponding random effect 
represent the mean of all the subjects, and each individual 
subject will have their own value for that coefficient. A random 
effect parameter estimate is considered as the magnitude of 
the variability of personal coefficients from the mean fixed 
effects coefficient. The fixed effect coefficients represent an 
average around which individual units may or may not vary. 
If it varies it suggests that there are unmeasured explanatory 
variables with random effects for each subject influencing the 
disease/recovery process or differences in coefficient could 
also be due to variables at the higher level being modeled. 
Random effect estimates are variances that combine the 
between-subject and within-subject variance, and are used 
to draw conclusions about the population from which the 
subjects were drawn and are not limited to subjects in the 
study.

The parameter estimates are needed for the interpretation 
of results. Parameters of the mixed model can be estimated 
using maximum likelihood estimation (MLE) or restricted 
maximum likelihood estimation (RMLE). The Akaike 
Information Criteria (AIC) and the Bayesian Information 
Criteria (BIC) are used as measures of ‘goodness of fit’ 
for model selection, and smaller values are preferred for 
both the criteria. These are based on penalized likelihood 
method and provide a trade-off between ‘goodness of fit’ 
and complexity of the model. The likelihood increases with 
the complexity of the model, hence, a penalty is included to 
discourage over-fitting. When comparing models that differ 
on both fixed and random effects, both AIC and BIC based 
on MLE can be used. However, AIC and BIC with restricted 
likelihood can be used only for comparing models with 
random effects and those having same fixed effects.

For complex models, likelihood ratio tests can also be 
used to check the validity of the model fit. This is done by 
comparing the model selected with a null model. The test 
compares a null model that excludes the factors of interest to 
the model that includes them. It determines the significance 
of including additional terms into the statistical model of the 
data. It gives chi-square value, the associated degrees of 
freedom and the P value. A null model serves as a baseline 
model and needs to have the same random effects structure 
as the one being compared, when verifying with a random 
slope model.14, 16, 18

If the distribution of the observed data is not known, or if 

the binomial or Poisson data has over dispersion or under 
dispersion, quasi likelihood estimation can be used.19

MLE approaches constitute a large family of commonly used 
methods for the analysis. Continuous responses are usually 
estimated via maximum likelihood, and binary (and other 
discrete) responses, by direct MLE via numerical quadrature, 
quasi-likelihood and Bayesian estimates. Multinomial 
responses could be estimated by adaptive Gauss-Hermite 
quadrature, penalized quasi likelihood (PQL), Monte Carlo 
expectation maximization (MCEM) algorithms and non-
parametric maximum likelihood (NPMLE) methods.

With several extensions of the standard mixed model 
available, estimation and inference of the model may differ 
according to specific procedures. Measuring fit is further 
complicated when different estimation methods are used.16, 

18, 20, 21  Statistical software have assisted in the application 
of these estimation procedures and studies/literature 
comparing the statistical software available to perform 
multilevel modeling have made it easier to choose the 
appropriate software.8, 9

Missing values further complicate the analysis. In MLE, 
not only patients who attended all the visits, but also 
patients with missing visits contribute information. All the 
available information, including incomplete data, could be 
used, in contrast to ordinary regression analysis. In the 
context of likelihood inference, data with missing completely 
at random (MCAR) and missing at random (MAR) are 
ignorable. That means, we can ignore the missing data and 
obtain valid estimate. While missing not at random (MNAR) 
are non-ignorable. Finally, the sample size at various levels 
in MLM could influence precision of the variance terms 
and large sample sizes are required to conduct research 
with sufficient power. In multilevel analysis, the number of 
individual observations in groups is not as important as the 
number of groups in a study.5, 16, 18

Different approaches for modeling correlated data are 
available based on the inclusion of the predictors at 
the group level, multiple levels of groupings, and on the 
multivariate responses of the dependent variable (Table 
2). When the response variable is continuous and normal, 
standard Gaussian model for continuous responses 
is useful. However, when the response variable is 
dichotomous or multinomial, the distribution is not normal 
and conclusions based on normal assumptions do not 
hold. The non-linear relation between the covariates and 
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Table 2: Different approaches for analysis of correlated data structures

Model type  Description

Fixed effects Models with only fixed factors and fixed covariates (if present) as predictors. Variables are 
only representative of the study units. Intercepts are modeled as fixed effects. Fixed coef-
ficient does not vary across individuals.

Random effects Models with one or more random factors and random covariates (if present) as predic-
tors. The variables could be random sample of all values and not just the complete set 
under study. Effects that influence covariance structure are also modeled as random 
factors. If only intercept is modeled is known as random intercept model.  If a slope is 
also modeled is known as random co-efficient model. 

Mixed effects Mixed models with both fixed and random effects. Contributes both as an intercept and 
covariance structure to the model. Predictors at any level can be fixed factors. Grouping 
variables can be random factors. 

Hierarchical or multilevel 
models

Mixed model with hierarchical structure where the variables are measured at more than 
one level. Level 1 data is nested in Level 2, where focus is on explaining the differences 
between groups in relation to differences within group. Can have more than 2 levels.

Random intercept model Intercept of the level 1 dependent variable is modeled as an effect of level 2 grouping 
variable & level 1 or 2 or both covariates. It will only answer why the mean values of the 
dependent variable vary.

Random coefficient model Along with the intercept, slope of the lower level covariate is also modeled as random 
effect of the grouping variable at level 2. Each group at higher level has an intercept and 
a slope to predict level 1 dependent variable.  Random co-efficient vary across individu-
als, conditionally on the subject-specific random intercept and covariates. It explains the 
relative effects of predictor variables.

Multivariate Models Enables simultaneous analysis of multiple dependent variables at level 1 in a multilevel 
setup in mixed model format

Cross-classified models 
and multiple membership 
models

Data that do not meet the nestling assumptions of hierarchical data can be analyzed. For 
example, if the subjects in the study are seen by doctor at different hospitals. Subjects 
are cross-classified by doctor effect.

Bayesian methods Introduce prior probability distributions to the unknown parameters of the available data 
and draw inferences using Markov chain Monte Carlo (MCMC) methods by adding new 
data; this is taken as posterior distribution. Updating the prior beliefs with the new data. 
This gives exact inferences where likelihood based methods give approximations.  The 
MCMC methods are particularly useful in models like the cross-classified and multiple 
membership models.  
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the response variable affects the covariance structure 
and adjusting the same is an important aspect of mixed 
modeling frameworks. Hence, identifying the proper 
distribution structure of the data and using an appropriate 
link function for the analysis is crucial. 

The link function describes the non-linear transformation 
between the linear predictor and the assumed distribution 
structure. The most common distribution used for a 
binary outcome is the binary distribution, and in special 
cases Bernoulli distribution is preferred. For multinomial 
data, an extension of Bernoulli distribution is considered 
as multinomial distribution for outcome variable, ordinal 
data has an ordered categorical distribution and if the 
occurrence is very rare, the Poisson distribution is used. 
The most commonly used link functions are the log, logit, 
probit and complementary log-log link functions. The 
logit, log-log and probit models can be specified to model 
proportions and binary outcomes, logit for multinomial 
and ordered multinomial models to model multiple 
categories, and log link generally is used for Poisson 
and negative binomial distribution models to model 
counts. Complementary log-log link function is used for 
interval censored models with dependent variable having 
binomial distribution. McCulloch and Neuhaus (2012) 
have assessed the impact of misspecification on various 
aspects of data modeling.22  

Bayesian approach
An alternative to the classical approach discussed above 
is the Bayesian approach. Unlike classical approach that 
assumes parameters have fixed but unknown values, 
Bayesian method treats parameters as random variables 
and assigns probability distribution to unknown values. It 
requires formulation of prior distribution for any unknown 
parameter, a previous estimate, which is updated 
with probability distribution of the observed data. This 
updated distribution is called the posterior distribution.5 

It combines our prior beliefs with the new evidence, 
allowing the full use of all the information. Computation 
techniques for application of Bayesian are required, as it 
involves extensive calculations, and the most commonly 
used software is based on Markov Chain Monte Carlo 
(MCMC) method. MCMC gives a chain of correlated 
parameter estimates from the full posterior distributions 
and can be used to provide exact inferences, while 
classical statistics gives optimum point estimate of the 
parameter. Two main MCMC procedures used are Gibbs 
sampling and Metropolis-Hastings sampling.

Applications in biomedical studies
The correlated modeling methodology has been used widely 
in genome-based studies to map copy number variations 
(CNV), particularly in over-dispersed and skewed coverage 
data to detect low-coverage and high-coverage regions in 
the genome. Sepulveda et al. (2013) have demonstrated 
the use of Poisson hierarchical models to detect CNV in 
seven Plasmodium falciparum malaria genomes.23 They 
have selected Poisson-gamma and Poisson-log normal 
distributions for estimations using Bayesian approach. 
Hierarchical methodologies have been incorporated for the 
selection of more promising single nucleotide polymorphism 
(SNP) and allele-specific copy number variants estimation.24, 

25 Conventional techniques for the detection ignore the 
correlated data structure like association with phenotype 
and conservation across the species, which can be 
included in the model-based analysis. Association studies 
on autoimmunity and lymphoma has been assessed by 
multivariate hierarchical models.26 Autoimmunity data 
presents a complex data structure with multiple factors at 
subject level and family level, along with multiple autoimmune 
conditions to be included to increase the precision of the 
estimates. Another area where this approach has been 
widely used is in studies on disease activity and pain, and 
coping abilities in autoimmune patients and personality 
traits.27 Finan et al. (2010) have measured the influence of 
genetic variants on pain in fibromyalgia patients.28 Further, 
a random effects model has been fit to study the increased 
risk of developing allergic disease in children with parental 
autoimmune condition.29 Treatment efficacy studies have 
also been reported.30 A Bayesian approach to calculate age-
specific reference limits for serum cytokine levels in children 
has been demonstrated by Delezuch et al. (2012).31

Use of this methodology for research in clinical field 
has been restricted to very few studies, particularly  in 
immunological and rheumatology. As most of the data 
structures used in these fields involve longitudinal data 
with correlated and clustered data sets, the applicability of 
mixed effect methodologies will be beneficial and essential. 
Patients with autoimmune diseases, such as systemic lupus 
erythematosus (SLE), polymyositis/ dermatomyositis (PM/
DM), Sjogren’s syndrome, rheumatoid arthritis (RA), etc. 
come up with multiple spells of clinical symptoms (outcome 
variable), with a prolonged disease/recovery process leading 
to correlation of observations and it is further complicated by  
multiple outcome variables. In addition, each disease has 
multiple covariates such as age, gender, autoantibodies, 
C-reactive protein and other biomarkers influencing the 
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process. The complexity of the data is increased with the 
involvement of multiple organs in some of the diseases. The 
disease can be clustered for different autoantibody groups 
(PM/DM), biomarkers (sero-positive or sero-negative RA), 
organ involvement (SLE) or disease activity (RA). Separate 
model strategies can be built to analyze the disease/recovery 
process for each autoimmune disease by accounting for 
clustering, confounding and correlation. This review tries to 
fill the gap in knowledge about the methodologies involved 
in statistical modeling of such data, with citations from 
available literature.10, 26-31 It also highlights the significance 
of implementing such methodologies by researchers in 
immunologic and rheumatologic studies.

Overall, mixed modeling or multilevel modeling is used 
in both experimental and observational studies for data 
reduction, prediction and causal inference.32 It plots an 
individual’s dependent variable over time and explains the 
variability in the intercepts and slopes due to covariates at 
multiple levels to specify the relationship among variables. It 
can be used to assess whether the average rate of change 
is a function of grouping or due to time-invariant/time-variant 
explanatory variables and can explicitly model heterogeneity 
when differences between individuals cannot be explained 
by ‘averages’. The effects could be generalized to wider 
population, if the subject selection process is random. The 
error term in the model indicates variance, which could 
not be accounted for by explanatory variables in the data 
structure. The model basically answers how each unit in the 
study change over time and predicts differences among units 
in their change. It models the data into two components: 
primarily, it analyzes factors that operate at the individual 
level, which is called ‘compositional effect’ like age, gender, 
habits, biomarkers etc. Secondly, it helps to gauge the 
‘contextual effects’ with factors like physician, hospital set-up 
or the area/city in which the subject is undergoing treatment, 
socio-economic background, and literacy rate influencing the 
outcome. In addition, the model estimates the contribution 
of variables at intra-subject and inter-subject level. Different 
approaches are being reported in literature to suit the data 
structure requirements in various fields. Consequently the 
availability of standard software with updated versions is 
necessary for the analysis. A thorough knowledge of the 
modeling process and computational skills are essential; 
this is the only limitation for its application.

Conclusion
In the disease/recovery process, often more than one type 
of event plays a role and a better understanding of these 

processes help in disease management by developing new 
patient management strategies. In summary, use of mixed 
models allows dependency/clustering and heterogeneity at 
the within subject and between subject levels to be analyzed 
along with an unbalanced data structures commonly seen in 
biomedical studies. Statistical approaches for the analysis of 
the data are now available as standard software. The choice 
of a suitable model type should be done by considering 
the underlying data structure, as this will help in proper 
parameter estimates. In particular, it is important to clarify 
the distribution of dependent variable, choice of fixed and 
random factors, and the selection aspects of the model fit 
when performing the analysis, as it can be used in predicting 
the effect of variables and can influence the research 
question.
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