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Introductıon 
Transplantation is a procedure in which a functional cell, 
tissue or organ is transferred from a donor’s body to 
the recipient to restore tissue or organ functions. Organ 
transplantation remains the only option during end-stage 
liver and heart failure. Continuous research has helped 
in overcoming the limitations of organ transplantation, as 
a result of which organs like kidney, liver, heart, trachea, 
cornea, pancreas, and bone marrow have been used for 
transplantation in human patients.1, 2 

The shortage of organ donors and the ultimate rejection 
of allografts are the two major concerns that limit the 
widespread use of organ transplantation. Understanding 
the mechanism of transplant rejection will help in identifying 
novel targets, which can provide immunosuppression-free 
lifelong survival. 

The rejection of transplanted organ is a consequence 
of non-immunological (ischemia-reperfusion injury) and 
immunological events. Ischemia/reperfusion injury (IRI) 
is an unavoidable condition during organ transplantation, 
which affects the short-term and long-term survival of the 

allograft. Due to the high level of vascularity, kidney and 
liver grafts are most susceptible to IRI. Ischemia is the 
injury caused to donor organs due to the disturbance in the 
blood flow after brain death of the donor. Disturbed blood 
flow leads to an anaerobic environment and acidosis in the 
tissue. Consequently, the lysosomal membranes become 
unstable and cause edema due to the accumulation of 
Na+ ions and water.3, 4 Parallelly, ischemia also induces 
activation of innate immune cells in the donor organ, and 
reperfusion of blood aggravates the damage, leading to 
the perpetuation of the inflammatory response.

The immunological response against allograft is believed 
to be the dominant determinant of rejection. The immune 
response against allograft involves the participation 
of innate and adaptive immune cells. Following organ 
transplantation, danger-associated molecular patterns 
(DAMPS), released due to tissue injury, induces the 
activation and functional maturation of donor-dendritic 
cells (DCs). Subsequent migration of donor DCs to the 
recipient’s lymph nodes and presentation of alloantigen 
triggers T-cell priming.5 T cells use two distinct pathways 
for graft rejection, which can be classified as direct and 
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indirect pathways. In the direct alloresponse, intact donor 
major histocompatibility complex (MHC) molecules loaded 
with allogenic peptide is presented to recipient T cells, 
leading to an acute polyclonal allogenic T cell response. 
The direct antigen presentation plays an important role 
in acute allograft rejection. In the indirect alloresponse, 
alloantigen is taken up by the recipient’s antigen-
presenting cells (APCs), processed and presented to 
recipient T cells leading to oligoclonal T cell response. The 
indirect response takes time to generate allogenic T cells 
and is mostly associated with chronic graft rejection. 6 In 
the present work, we have discussed the important role 
played by several innate and adaptive immune cells during 
allograft rejection. 
 
Role of innate immune cells in transplant 
rejection
The role of adaptive immune cells in allograft rejection is 
well studied. However, the phenotype and function of innate 
immune cells in transplantation are not entirely understood. 
The ability of innate immune cells to recognize allograft, 
generate an early immune response, prime and alert the 
adaptive immune system makes them an important cell 
types in determining the generation of tolerance or rejection 
of the allograft. Some of the crucial contributions of innate 
immune cells in transplantation tolerance and rejection are 
discussed below:

Neutrophils
Transplant injury activates the secretion of several 
chemokines by vascular endothelium such as CXCL1, 
CXCL2, and CXCL8. This plays a key role in the recruitment 
of neutrophils.7 Neutrophils accumulate in large numbers 
within a few hours of transplantation and contribute to 
transplant-induced IRI. Degranulation of neutrophils 
leads to the release of the tissue-digesting enzymes 
like metalloproteinases (MMPs) and reactive oxygen 
species (ROS), which induces damage to the allograft.8 

After infiltration into the donor organ, neutrophils secrete 
chemokines such as C-C motif ligand 1 (CCL1), CCL2, 
and CCL5, which further recruits T cells in the allograft.9 
Consequently, inhibition of neutrophil recruitment into the 
allograft delays the T cell infiltration and chronic rejection. It 
has also been shown that depletion of neutrophil enhances 
the costimulatory-blockade induced survival of cardiac 
allografts and prevents lung and liver IRI.10-12 Besides, 
TNF-α production by neutrophils is shown to stimulate DCs 
to produce IL-12, which skews the T cell differentiation 
towards Th1 lineage and promotes allograft rejection.13 

These studies suggested that neutrophil provides an 
important link between adaptive and innate immune cells 
in the transplantation.

Dendritic cells (DCs)
DCs are professional antigen-presenting cells, and 
present alloantigen to T cells, and play a central role in 
the establishment of allograft-specific immune response.14 
After organ transplantation, DCs present in the donor graft 
mobilizes into recipient’s secondary lymphoid organs and 
directly prime the host allogenic T cells (direct antigen 
presentation) leading to acute rejection of graft.15 Donor 
DCs can also transfer the intact allopeptide loaded-MHC 
molecules to host DCs, which then activate the allogenic 
T cells (semi-direct antigen presentation) leading to slower 
rejection.16  In other scenario, recipient DCs takes up 
alloantigen from the graft, process and present self-MHC 
loaded antigens to recipient T cells leading to chronic 
rejection.17 Cytokines produced by DCs mediate CD4+ 

T cells differentiation and also provide help to B cells for 
alloantibody production. Targeting DC-T cell interaction is 
believed to be an efficient way to prevent allograft rejection. 
In contrast, there are DCs that show immunoregulatory 
function and improve allograft survival.18 The tolerogenic 
DCs have low expression of a costimulatory molecule, show 
resistance to maturation and secrete anti-inflammatory 
molecules such as IL-10 and TGF-α. and control the T cell 
proliferation, and promote the differentiation of regulatory 
CD4+ T cells.18 The concept of donor-specific transfusion 
(DST) is well established to induce transplantation tolerance. 
Pretransplant infusion of immature donor-derived DCs 
in combination with short-term immunosuppression has 
shown reproducible results in laboratory animal models, 
suggesting the importance of DCs in the transplantation.14, 

19  Several methods have been tried to induce tolerogenic 
DCs and the same has been investigated in phase I/II 
clinical trials for kidney transplantation. Recently, it has 
been shown that reprogramming of dendritic cells with 
CRISPR/Cas9 nanoparticles for CD40 can reduce the skin 
graft rejection.20 

Macrophages
 Macrophages and its precursor monocytes are shown to 
perform both pro- and anti-inflammatory functions and adapt 
to the specific phenotype based on the microenvironmental 
cues present in the allograft.21 In acute and chronic 
rejection, macrophages account for about 38-60% of total 
graft infiltrating leukocytes in the rejecting organs.21-23 

Increased infiltration of macrophages within glomeruli is 
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associated with reduced survival of renal transplants.24 

Allograft infiltrating macrophages are associated with acute 
cell-mediated rejection as well as acute antibody-mediated 
rejection.21 Depletion of macrophages reduces the allograft 
injury and pathology of rejecting allografts.23, 25 These 
studies suggest that macrophages play an important role 
in acute graft rejection and act as a diagnostic marker for 
graft rejection. 

Natural killer (NK) cells
NK cells are known to express several activating and 
inhibitory receptors that recognize the class I MHC 
molecules, and by engaging these receptors, NK cells 
can distinguish autologous and allogenic cells.26, 27 NK 
cells are known to control the survival of hematopoietic as 
well as solid organ transplantations.28-30 Perforin secretion 
and NKG2D interaction of NK cells have been shown to 
be required for the tolerance to islet and cardiac allografts 
induced by anti-CD40L mAb.30, 31 NK cells eliminate donor 
antigen-presenting cells in the graft, which mediates the 
long-term survival of skin allografts.32

Mast cells
Mast cells are also known to influence the adaptive and 
innate immune cells and play an important role in the 
rejection of allograft.33 Mast cells act as antigen-presenting 
cells, express several co-stimulatory molecules and 
produce wide varieties of both anti-inflammatory and 
proinflammatory molecules.34, 35 Mast cell degranulation 
breaks the peripheral tolerance in skin and cardiac 
allograft.36 Mast cells are also known to produce several 
molecules such as histamine, fibroblast growth factor-2 
(FGF-2), TGF-α, chymase and cathepsin G. These 
molecules contribute to the histological changes in the 
graft and fibrosis.3,37

Role of adaptive immune cells in transplant 
rejection
CD4+ T cells
Alloantigen presented by the donor or recipient APCs leads 
to activation and proliferation of allogenic CD4+ T cells, 
which are known to play a dominant role during allograft 
rejection.38, 39 Depending upon their cytokine secretion 
and functions, CD4+ T cells are characterized into various 
subsets, and their functions during allograft rejection are 
discussed below:

Th1 cells
Exposure of naive CD4+ T cells to the microenvironment 

enriched with IL-12 and IFN-γ leads to the activation of 
transcription factor T-bet, which induces the differentiation 
towards Th1 lineage. These Th1 cells primarily show 
secretion of IL-2, IFN-γ and TNF-α. CD4+ T cell clones in the 
human kidney allografts. Production of a high level of IFN-γ 
suggests that Th1 cells play an important role in the acute 
allograft rejection.40 IL-2 produced by Th1 cells mediate 
secretion of IFN-γ by CD8+ T cells, which further boost 
Th1 response forming a positive feedback loop to amplify 
allogenic Th1 response. Th1 cells also activate B cells, 
which produce alloreactive antibodies, and cause acute 
rejection of the allograft.41 In contrary, IFN-γ is also believed 
to regulate alloimmune response and help in the induction 
of transplantation tolerance. On a similar line, IL-12 or 
IFN-γ deficient recipient mice showed the faster rejection 
of rat cardiac xenograft then wild-type mice.42 Furthermore, 
IFN-γ-/- (GKO) mice showed accelerated rejection of kidney 
and cardiac allografts.43-45 IFN-γ expression of alloantigen 
reactive Tregs was found to be required for their function in 
controlling skin allograft rejection.46 

Th2 cells
Exposure of naive CD4+ T cells to IL-4 or IL-33 drives Th2 
differentiation through activation of Signal Transducer 
and Activator of Transcription 6 (STAT6) and GATA3. Th2 
cells were shown to mediate allograft rejection by inducing 
activation of eosinophils.47 In human renal allograft 
recipients, Th2 cells dominate during chronic rejection.48 

Transfer of in-vitro generated Th2 cells induced rejection of 
H-Y disparate skin graft.49 In contrast, immunosuppressive 
Th2 cytokine IL-10 secreted by alloantigen-reactive CD4+ 
Tregs is shown to inhibit proliferation and Th1 differentiation 
of naive CD4+ T cells, which was found to be responsible 
for tolerance to alloantigen in-vivo.50

Th17 cells
The cytokine transforming growth factor-β (TGF-β)
with IL-6 drives the expression of RORγt leading to the 
differentiation of CD4+ T-cell to Th17 lineage. Renal biopsy 
of rejected kidney graft showed the presence of CD4 and 
IL-17, suggesting the role of Th17 cells in transplantation 
rejection.51 Alloantigen-specific CD4+ T cell lines derived 
from human patients of chronic allograft rejection show 
high levels of cytokines such as IL-2, IL-17, and IFN-γ, 
which suggest the role of Th1 and Th17 in chronic allograft 
rejection.52, 53 Graft interstitial infiltrates show expression 
of IL-17 and IL-21, which correlated with reduced allograft 
survival.54 In murine lung transplantation, neutralization 
of IL-6 was shown to control the IL-17-induced severity 



Indian Journal of Inflammation Research  Page 4 of 14

of tracheal obliteration.55 Furthermore, IL-17 production 
by CD8+ T cells was found to be responsible for rejection 
of cardiac allograft in T-bet-/- recipient in the presence of 
CD40-CD40L blockade.56 IL-17-mediated recruitment of 
neutrophils is found to be associated with cardiac allograft 
rejection.57

Regulatory T cells (Tregs)
Regulatory cells are recognized to promote and maintain 
donor antigen-specific tolerance. Sakaguchi et al. showed 
that IL-2 receptor alpha-chain (CD25) expressing CD4 T 
cells are suppressive CD4+ T cells that help in maintaining 
self-tolerance and are known as regulatory CD4 T cells 
(Tregs).58 Drugs like rapamycin directly inhibit the mTOR 
pathway and promote Treg differentiation.Tregs are already 
being used in the clinic as a successful cellular therapy. 
Literature supports that rather than independent functions, 
the interaction of Tregs with APCs and microenvironment 
mediates immunosuppression. IL-2 and TGF-β induce 
Foxp3 expression and differentiation of naive CD4+ T 
cells towards Treg lineage.59, 60 Tregs themselves are 
anergic, but their overexpression of CD25 helps them 
to quench IL-2 and suppress the activation of effector T 
cells.58, 61 Expression of granzymes by Tregs, cytotoxic T 
lymphocytes (CTL) and NK cells induce killing of APCs, 
which leads to compromised antigen presentation.62 
Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) 
expression mediates the tolerogenic activity of Tregs. 
CTLA4 binding delivers inhibitory signals by counteracting 
CD28 costimulation, inhibition of TCR immune synapse 
and increasing the mobility of T cells, which reduces their 
ability to interact with APCs.63 TGF-β secretion by Tregs or 
Foxp3-cells (Tr1 cells) is shown to mediate the generation 
of induced Tregs (iTregs).64-66 TGF-β has also been 
shown to induce the expression of regulatory markers 
CD39 and CD73 on T cells and DCs.67, 68 IL-10 secreted 
by Tregs or Foxp3 negative Tr1 cells have been shown to 
regulate inflammatory bowel disease (IBD), experimental 
autoimmune encephalomyelitis (EAE), collagen-induced 
arthritis, and allergic airway inflammation.69,70 Adoptive 
transfer experiments with Tr1 cells were shown to suppress 
allogenic skin graft rejection.71 Treatment of recipients with 
IL-2-IL-2 mAb complex induce the expansion of Tregs in-
vivo, which in turn known to promote the survival of islet 
allograft.72 Tregs generated in the presence of alloantigen 
and IFN-γ prevents the rejection of islet and skin allograft.73 
Exposure of DCs and macrophages to TGF-β and IL-10 
or retinoic acid leads to an augmentation of their ability 
to induce Tregs and mediate tolerance against allograft.74 

Apart from Tregs, adoptive transfer of tolerogenic DCs is 
shown to promote tolerance in recipients to skin allografts.75 
Immature DCs, which are reportedly tolerogenic, are shown 
to prolong the survival of cardiac allograft.76 Techniques for 
the propagation of tolerogenic DCs have been employed as 
cellular therapy in hematopoietic stem cell transplantation. 
Infusion of immature DC pulsed with antigen led to the 
generation of antigen-specific regulatory CD8+ T cells, 
which efficiently secrete IL-10, but have impaired IFN-γ 
secretion and cytolytic functions.77

Transplantation tolerance
Immunologic tolerance came into light when Ray Owen 
observed that dizygotic bovine twins are tolerant to each 
other’s blood due to placental interchange during gestation.78 
In transplantation, operational tolerance is defined as well-
functioning of the graft with no rejection sign in the absence 
of any immunosuppressive drug. Achieving transplant 
tolerance remains elusive beyond the liver transplantation 
in human patients. Studies with non-human primates have 
helped in identifying potential tolerogenic approaches. 
Deliberately establishing tolerance to the donor tissues by 
reprogramming the recipient’s immune system holds great 
promise for the success of organ transplantation. In the 
1970s, Gerson and Kondo used thymectomized, lethally 
irradiated, bone marrow-reconstituted mice and showed 
that a subset of bone marrow-derived (BMD) lymphocytes 
makes antibody. The antibody production was independent 
of thymic lymphocyte interaction and can be tolerized in the 
absence of thymus-derived lymphocytes.79 Another subset 
of BMD cells that require thymus-derived lymphocytes 
cannot be tolerized.79 However, newly emerging cells from 
the bone-marrow can break the antigenic tolerance to the 
primary antigen and proposed that induction of tolerance 
as well as immune response in thymus is dependent on 
BMD cell population and they require co-operation of 
thymic lymphocytes.79 Various protocols have been used 
for successful induction of tolerance to alloantigen in the 
rodent model. Majority of the strategies used for tolerance 
induction relies on regulating T-cells functions by either 
intensive T cell depletion or costimulatory-blockade. 

Central and peripheral tolerance
Recombination of TCR genes in immature thymocytes 
gives rise to some cells with potential self-reactivity. 
Central tolerance mechanisms operate in thymus due to 
which thymocytes which have a TCR with low affinity for 
the self-peptide-MHC complex are positively selected, 
while the unwanted ones die due to neglect. Central 
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tolerance comprises of four processes-clonal deletions, 
clonal diversion, anergy, and receptor editing. Clonal 
deletion mediates apoptosis of the cells which have 
high affinity TCR-peptide and MHC interaction leading 
to the elimination of self-reactive clones.80 During the 
clonal diversion, cytokines TGF-β and IL-2 suppress the 
apoptosis of T cells, which show high-affinity interaction 
with self-MHC molecules and mediates their conversion 
to Tregs.81 In the receptor editing, thymocytes with high-
self-reactivity undergo secondary gene-arrangement at the 
TCRα loci, which leads to altered TCR specificity.81

 Peripheral tolerance takes care of the self-reactive cells 
that have escaped the central tolerance. Peripheral 
tolerance mediates unresponsiveness (anergy) or deletion 
of self-reactive T cells upon their encounter of self-antigen 
outside of the thymus. T cells activation, in the absence of 
costimulation, induces their long-term hypo-responsiveness 
and anergy in the T cells. Tregs express CD39 and CD73, 
which promote a hypoxic environment and regulate T-cells 
activation by inducing anergy.82 Negative costimulatory 
signals through CTLA4 and PD-1 play an important role 
in mediating peripheral tolerance. For peripheral deletion 
of self-reactive lymphocytes, Fas and Bim are recognized 
as important contributors.83 Binding of Fas-FasL mediates 
activation-induced cell death (AICD) in the T cells that had 
received repeated stimulation by self or foreign antigen. 
Furthermore, Bim helps in restoring homeostasis by killing 
activated T cells at the end of an immune response.83

Regimens to induce transplantation tolerance
A. Chemotherapeutic drugs: Immunosuppressants
Immunosuppressive drugs are the mandatory treatment 
given after organ transplantation in human patients. 
Advances in immunosuppressive therapies have helped 
in controlling the acute rejection of the allograft. Currently 
used immunosuppressive drugs mainly fall under the 
category of glucocorticoids and cytostatics. 

Glucocorticoids are the most crucial treatment required 
after organ transplantation. They act by inhibiting the 
expression of proinflammatory cytokines such as IL-2, IL-4, 
IL-6, and TNF-α. As a result of such immunosuppression, a 
general cell-mediated immune response is compromised.84 
They also suppress humoral immunity by affecting the B 
cells expansion and antibody synthesis. 

Calcineurin inhibitors are one of the widely used 
immunosuppressive drugs taken to prevent acute rejection. 

Cyclosporine and tacrolimus (also known as fujimycin or 
FK506) inhibit calcineurin, thereby inhibiting transcription of 
IL-2. Calcineurin also enhances the expression of TGF-β, 
which inhibits the proliferation of alloantigen-specific T 
cells.85 

Antiproliferative drugs like methotrexate and azathioprine 
are milder and given during the maintenance phase of 
the treatment. Azathioprine is a purine analog that blocks 
nucleic acid synthesis. Methotrexate is a competitive 
inhibitor of dihydrofolate reductase (DHFR ; a folate analog), 
which inhibits the synthesis of nucleic acid. Advances in 
the understanding of immune system functioning have 
resulted in effective use of immunosuppressive drugs. 
However, generalized immunosuppression leads to a 
compromised immune system and a high risk of infection 
and cancer. Hence, the future of organ transplantation 
relies on the implementation of strategies to generate 
alloantigen-specific tolerance.

B. Biologics  
Various components of the immune system have been 
targeted to attenuate the immune response to the allograft. 
Activation of naive CD4 or CD8 T cells requires three 
distinct signals. The first signal is the basis of the specificity 
of T cell response and is provided by the interaction of 
TCR on a T-cell with peptide bound to MHC molecules on 
APC.86 Costimulation, the second signal is provided by the 
interaction of cell surface molecules between T cells and 
APCs. Cytokines provide the third signal and determine 
the differentiation status of the T cell. It has been shown 
that, in the absence of the costimulatory signals, T cells 
become anergic, and obstinate to further stimulation by 
the same alloantigen.87 Due to the significant contribution 
of costimulatory signals in T cells activation and function, 
blocking of costimulatory signals stand out to be a potential 
target for suppressing the allograft-specific immunity. 

Costimulatory molecules are categorized based on 
their structural and functional properties.88 Structurally, 
costimulatory molecules fall under four categories, 
immunoglobulin (Ig) superfamily (CD28 and ICOS), tumor 
necrosis factor receptor family (e.g., CD27, OX40, 4-1BB), 
cell adhesion receptors and integrins (LFA-1), and T cells Ig-
domain and mucin domain (TIM) molecules. Functionally, 
positive costimulation promotes T cell activation, survival, 
and differentiation, whereas negative costimulation inhibits 
T cells activation and function. Different strategies employed 
for blocking the costimulatory signals for inducing long-
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term survival or tolerance to allograft are given in table 1 
and further described below:

(i) Blocking CD28-CD80/CD86 interaction 
CD28 remains constitutively expressed on naive and 
activated CD4 and CD8 T cells, while its ligand CD80/
CD86 are expressed on activated DCs.89,90 The importance 
of CD28 is evident, as CD28 knockout mice show 
significantly decreased IL-2 production resulting in reduced 
T cell activation, T cell differentiation, and defective B cell 
response.91 Upon activation, T cells upregulate CTLA4, 

which is a structural homolog of CD28, but have ~20-
fold higher affinity for CD80/CD86. CTLA4 provides 
negative costimulation by inhibiting IL-2 synthesis as 
well as promoting the expansion of Tregs. Engagement 
of CD80/86 with CTLA4-Ig leads to upregulation of 
indoleamine 2, 3-dioxygenase (IDO), which degrades 
tryptophan, an essential amino acid required for T cell 
proliferation.92 CTAL4-Ig (abatacept) has been successfully 
used for the long-term survival of islet, cardiac, and renal 
allografts in rodents.93 Belatacept, a second-generation 
CD28 antagonist, has shown significant potential in phase 

No Mice strains Tolerogenic regimen
Median survival 

time (days)

1 C57BL/6 recipient, BALB/c donor 45, 134

Untreated 8 days

DST 7 days

Anti-CD40L 13 days

DST + Anti-CD40L 46 days

Adult thymectomy + 
DST + Anti-CD40L > 100 days

2 C57BL/6 recipient, BALB/c donor 135, 136
CTLA4-Ig 10 days

CTLA4-Ig + Anti-CD40L 20 days

3 CBA/Ca recipient, B10.BR donor137, 138

Adult thymectomy + 
CD8+ T cell-depletion + 

Anti-CD40L

Indefinite survival,
>100 days for the 
second donor graft

4 CD28-/- C57BL/6 recipient, BALB/c 
donor136

CD8+ T cell-depletion + 
Anti-CD40L 49 days

CD8+ T cell depletion + 
Anti-CD40L + CTLA4-Ig 57 days

5 C57BL/6 recipient, BALB/c donor 139, 140

Anti-CD45RB

Anti-CD45RB + 
Anti-CD40L

Early rejection

Prolonged

Anti-CD45RB + 
Anti-CD40L + CD4 

T cell depletion
Acute rejection

Anti-CD45RB + Anti-
CD40L+ CD8 T cell 

depletion

90 days

6 C57BL/6 recipient, DBA/2 donor32
CTLA4-Ig + Anti-

CD40L+ Anti-OX-40L
100 days

Table 1: Costimulatory-blockade and T cell depletion to prolong the survival of murine allogenic skin allograft
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III (BENEFIT) trial and showed that it is superior in inducing 
long-term renal graft function over cyclosporine.94  

(ii) Blocking CD40L-CD40 interaction
CD40L and CD40 interaction have been shown to play a 
central role in adaptive immunity. It has been shown that 
mutation in the CD40L gene leads to the X-linked hyper-
IgM syndrome and reduced class switching to IgG, IgA, 
and IgE.  Also due to the non-functional activity of CD40L 
molecules in X-linked hyper-IgM syndrome patients, 
thymus-dependent (TD) response, and generation of GCs, 
memory B cells, and plasma cells, is severely impaired.95 
Activated CD4+ T cells and CD8+ T cells upregulate 
CD40L, whereas its ligand CD40 is shown to express on 
APCs. CD40L-CD40 ligation induces B cell maturation, 
class switching, plasma cell differentiation, and enhanced 
expression of CD80/CD86, which mediates the generation 
of T cell-dependent humoral immune response.96 Ligation 
of CD40 on DCs with CD40L expressed on activated CD4+ 
T cells results in increased expression of MHC, enhanced 
expression of costimulatory molecules, augmented 
production of proinflammatory cytokines such as IL-1, 
IL-6, IL-12, and increase the survival of DCs.97 These 
events lead to the generation of effective T cells response. 
CD40L-CD40 signaling is shown to augment inflammatory 
response by inducing the production of various  chemokines 
(e.g., macrophage-inflammatory protein-1α MIP-1α, 
MIP1β, MCP-1 [monocyte chemoattractant protein-1] 
and RANTES [regulated upon activation, normal T cell 
expressed and secreted]), which mediate the recruitment 
of immune cells at the site of inflammation. The use of 
blocking monoclonal antibody against CD40L has shown 
success in prolonging the survival of skin, cardiac, and islet 
allograft in rodents as well as in non-human primates.98 

However, anti-CD40L mAb therapy provides limited survival 
due to the activity of CD40L blockade resistant primed or 
memory CD8+ T cells. Hence, combined therapy of CD8+ 
T cells depletion along with anti-CD40L blockade was 
proven to be a better treatment to achieve long-term graft 
survival in the sensitized recipients.99 Although monoclonal 
anti-CD40L therapy showed promising results in murine 
models, however, clinical trials with anti-CD40L mAbs in 
patients with autoimmune disorders led to unexpected 
thromboembolic complications.100 Newer antibodies 
targeting the CD40/CD40L pathway have been shown to 
avoid platelet activation and consequent thromboembolic 
complications, but are yet to be translated into clinical 
trials. It has been shown that a glycosylated form of anti-
CD154 possesses reduced ability to bind Fc receptors and 

activate complement and has been proven to be equally 
effective in prolonging allograft survival.101 

It has been shown that treatment with donor-specific 
transfusion (DST) along with antibody against CD40 
ligand permits long-term survival of highly antigenic donor 
skin allografts, despite the presence of functionally intact 
alloreactive lymphocytes.102 Infusion of DST and anti-
CD40L leads to pre-emptive induction of tolerance by 
inducing the mass reduction of alloreactive effector T cells 
and generating anergic/regulatory cells days before the 
placement of allograft.103 Sensitization of host to a wide 
range of donor MHC antigens, which arises due to blood 
transfusions or previously failed grafts, remains one of 
the critical issues in clinical transplantation. Pre-exposure 
to DST leads to broad alloantigen-induced tolerance, 
which helps in subsequent engraftment of the allograft.103 
Combination of DST and cyclosporine is shown to be 
effective in reducing acute rejection of the human renal 
allografts.104 The infused DST is taken up and processed 
by APCs, which present the alloantigen to recipient 
alloreactive T cells in the presence of anti-CD40L antibody. 
This leads to rapid abortive expansion of alloreactive 
T cells, which results in anergy as shown in Figure 1. 
Besides, anti-CD40L antibody prevents the maturation of 
host APCs inducing them for the tolerogenic presentation 
of DST-derived allopeptides. CD40L blockade inhibits the 
generation of growth factors like IL-2, IL-7, and IL-15. This 
also impacts the T cells activation and function. Blocking 
with anti-CD40L antibody is shown to enhance iTregs 
development, which in-turn suppresses the alloreactive T 
cells response and induce prolonged allograft survival.105 
Blocking of CD40L/CD40 interaction is reported to induce 
long-term tolerance to cardiac, skin, islets, myoblasts, limbs 
and bone marrow transplants.106, 107 Anti-CD40L antibody 
inhibits maturation of APCs, downmodulate CD28-B7 
interaction, resulting in the lack of costimulatory signals 
and T cell anergy. Combined treatment with an antibody 
against CD40 ligand, along with the one transfusion of 
donor splenocytes, prolonged survival of fully mismatched 
BALB/c skin allografts on C57BL/6 recipients (~20% of 
grafts survived more than 100 days).102 However, indefinite 
allograft tolerance is not possible with DST plus anti-CD40L 
therapy, especially during highly allogenic grafts like skin. 
Later, it was shown that thymectomy in allograft recipients 
treated with DST plus anti-CD40L mAb induced indefinite 
allograft survival.45 Additional strategies of simultaneous 
but blockade of the CD28 and CD40 pathways effectively 
aborts the T cell expansion both in-vitro and in-vivo and 
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promotes long-term survival of fully allogenic skin grafts 
and inhibit the development of chronic vascular rejection 
of cardiac allografts. Simultaneous blockade of CD28 and 
CD40 effectively promotes skin allograft survival in C3H/
HeJ mice extending the MST beyond 100 days, but with 
the same treatment C57BL/6 mice rejected allografts with 
MSTs ranging between 20 to 30 days. However, CD28 and 
CD40 pathways are critically independent regulators of 
T-cell-dependent immune responses.98 Blocking of CD28/
B7 inhibits the primary T cell response, and CD40L/CD40 
blocking inhibits the Th1 differentiation and maintenance 
of alloantigen-specific response.108 Conclusively, CD40/
CD40L blocking leads to prolonged allograft survival and 
show a synergistic effect when used in combination with 
the blocking of other members of costimulatory molecules. 

(iii) Blocking OX40-OX40L interaction
OX40 (CD134) and its ligand OX40L (CD252) belong to 
tumor necrosis factor superfamily of costimulatory signaling 
molecules and are expressed primarily on activated 

CD4+ and CD8+ T cells. Signals from OX40 promote T 
cell survival, clonal expansion of effector and memory 
population. Also, OX40 suppresses the differentiation 
and function of Tregs.109 The importance of OX40/OX40L 
pathway came into light upon demonstration of rejection 
of allografts in CD28 and CD40L double knockout (DKO) 
mice. The sole blockade of OX40/OX40L pathway leads 
to the prolonged survival of skin allograft in CD28 and 
CD40L DKO mice. The blockade of OX40/OX40L signaling 
along with CD28/CD40L blockade leads to prolonged skin 
allograft survival.110 It was shown that memory T cells 
express a higher level of OX40 and mediate rejection of 
allograft in the absence of CD28 and CD40L signaling.111

(iv) Blocking ICOS-ICOSL interaction
Inducible T cell costimulator (ICOS) expression is 
induced on the surface of activated T cells. Its ligand 
ICOSL is upregulated on activated APCs. ICOS-ICOSL 
signaling promotes T cells activation and differentiation, 
and enhances T cell-dependent B cell response.112, 113 

Fig. 1. Mechanism of induction of tolerance with donor splenocytes transfusion (DST) and anti-CD40L mAb
Upon injection, DST is taken up by the host DCs, leading to the generation and presentation of alloantigenic peptides. Presentation of donor alloantigen 
bound to host APCs in the absence of CD40/CD40L signals leads to rapid and abortive expansion of T cells. Due to this, the part of alloreactive cells un-
dergoes apoptosis or become hyporesponsive (anergic) to further stimulation. Parallelly, this environment supports the expansion of alloantigen-specific 
regulatory T cells enter into the allograft and control the function of effector cells. Furthermore, the blockade of CD40/CD40L interaction leads to inhibition 
of B cells activation and maturation, which hampers the alloantigen-specific alloantibody response.
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CD28-CD80/CD86 interaction is shown to optimize ICOS 
expression. Stimulation of ICOS in activated T cells induces 
production of IFN-γ, IL-4 and IL-10. Blocking of ICOS and 
CD40L has been shown to prevent chronic rejection in 
mouse cardiac transplantation model.114

(v) Blocking CD27-CD70 interaction
CD27 belongs to TNF superfamily and is expressed on NK 
cells, and naive T and B cells. Its ligand CD70 is expressed 
on APCs. Signaling through CD27 induces positive 
costimulatory signals leading to T cell proliferation and 
survival. Blocking of the CD27-CD70 pathway has been 
shown to prolong the murine cardiac allograft survival.115 
Combination of CD44/CD70 blockade along with anti-
CD40L/LFA-1 inhibited the expansion of memory CD4+ 

and CD8+ T cells, and prolonged the survival of cardiac 
allograft.116 

(vi) Blocking 41BB-41BBL interaction
41BB (CD137) is a member of TNFR superfamily, which is 
shown to promote CD8+ T cells proliferation by binding to 
its ligand 41BBL expressed on mature APCs. Anti-4-1BB 
mAb augmented the generation of alloantigen-specific 
CD8 T cells in graft vs. host disease and enhanced the 
rate of cardiac and skin allograft rejection.117  Thus 41BB-
41BBL pathway serves as an important target in CD8+ T 
cells-dependent rejection. 
 
(vii) Blocking LFA-1: ICAM interaction
Lymphocyte function-associated antigen-1 (LFA-1) is 
a member of β2 integrin family mediating the adhesion 
of leukocytes to the endothelium. The ligand for LFA-1, 
intercellular adhesion molecule-1 (ICAM-1) is shown to 
be expressed on mononuclear cells, B cells and vascular 
endothelium. The survival of allogenic islet and cardiac 
grafts were prolonged in the presence of anti-LFA-1 mAb, 
which blocks LFA-1-ICAM-1 interaction.118 Furthermore, 
when combined with costimulatory blockade (CTLA4-Ig 
plus anti-CD40L mAb), treatment with blocking anti-VLA4 
and anti-LFA-1 mAb, controlled the CD8 memory T cells 
trafficking and functions leading to the enhanced survival 
of murine skin allograft.119 

(viii) Promoting PD-1-PD-L1/L2 interaction
Similar to CTLA-4, PD-1 (CD279) is another member 
of Ig superfamily that shows co-inhibitory functions by 
suppressing T cells activation and maintaining peripheral 
tolerance to self-antigens. Blocking antibodies targeting 
PD-L1 prevents T cell apoptosis, increase T cell 
proliferation and Th1 cell differentiation, which result in the 

faster rejection of MHC class II-mismatched skin grafts.120 

C. Inducing chimerism for transplantation tolerance
Chimerism can be categorized into mixed chimerism and 
full chimerism. Mixed chimerism, as the name suggests, is 
defined when both donor and recipient cells co-exist in the 
recipient body. Whereas, full chimerism implies complete 
elimination of recipient hematopoietic lineages and the 
existence of 100 percent donor cells in the recipient bone 
marrow. Reports suggested that partial irradiation of the 
recipient bone marrow combined with deletion of recipient 
T cells in peripheral organs leads to mixed chimerism, 
which supports the induction of tolerance towards donor 
tissue. Mixed chimerism has been shown to promote 
tolerance generation towards kidney allograft.121 

D. B-cell therapy for transplantation tolerance
Tolerant renal transplant patients show an increased 
percentage of naive B cells and transitional B cells. 
Transitional B cells are known to produce immunoregulatory 
cytokine IL-10.122 Long-term islet allograft survival was 
achieved in recipients that received a combination of rabbit 
anti-thymocyte globulin (ATG) and rituximab, a CD20+ B 
cell-depleting mAb. Blockade of BAFF (B cell-activating 
factor) using belimumab promoted tolerance of cardiac and 
islet allografts in murine models. Belimumab induces the 
depletion of alloreactive B cells, and promote transitional 
B cells, and abrogate alloantibody response. Bortezomib 
is a proteasome inhibitor that causes apoptosis of plasma 
cells and helps in the regulation of alloantibody synthesis 
and shown to improve allograft survival.121 Apart from 
alloantibody production of B cells, the role of regulatory 
B cells was also reported in transplantation.123 We have 
shown that CD40-CD40L costimulatory blockade induces 
IL-10-producing marginal zone B cells (MZP Bregs) and it 
acts as regulatory B cells and contributes to the generation 
of tolerance to cardiac allograft in mouse.124, 125. Depletion 
of B cells during the generation of tolerance inhibits the 
survival of cardiac allografts and caused acute rejection of 
allograft.125 It has been shown that adoptive transfer of IL-
10-producing MZP Bregs promotes the follicular regulatory 
CD4+ T cells (Tfr) cells and inhibit the differentiation of 
inflammatory follicular CD4+ T cells (Tfr) in the secondary 
lymphoid organs.124 These studies suggest that B cells play 
an important role in transplantation tolerance. Recently, 
a clinical study on kidney transplantation showed that 
presence of donor-specific HLA antibodies (DSA) in the 
circulation has direct link with the survival of allograft and 
monitoring the DSA in serum before transplant may help in 
risk stratification of patient.126 Similarly, another study from 
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Netherlands showed that the presence of autoantibodies 
against Rho-GDP dissociation inhibitor 2 (ARHGDIB) is 
significantly associated with loss of renal transplants and 
monitoring ARHGDIB antibody in recipients may help in 
the pretransplant risk assessment.127

E. Role of innate immune cells in transplantation tolerance
Macrophages acquire regulatory phenotype (Mreg) in 
response to macrophage colony-stimulating factor (M-CSF) 
and IFN-γ and help in allograft survival. Mregs are reported 
to enhance cardiac allograft survival by directly eliminating 
allogenic T cells through phagocytosis. Besides, the 
production of iNOS, Mregs decreases IL-2 and IFN-γ 
production and suppress the proliferation of alloreactive 
T cells.128 Production of indoleamine 2,3-dioxygenase 
(IDO) by Kupffer cells leads to degradation of tryptophan 
which is a crucial molecule required for efficient T-cell 
proliferation.129 Apart from this, macrophages are shown 
to play an important role in wound healing, which helps 
in resolving the injury caused during transplantation 
surgery. In the lymphopenic hosts, NK cells compete 
for IL-15 and suppress the homeostatic proliferation of 
memory CD8 T cells, which help in inducing the prolonged 
allograft survival.130 DCs are known to mediate tolerance 
vs. rejection, depending upon their maturation status. 
The immunosuppressive potential of these immature/
tolerogenic DCs arises due to their deficient expression 
of class II MHC and costimulatory molecules.131 Cognate 
interaction of immature DCs with Ag-specific T cells leads 
to anergy or apoptosis. In support, infusion of immature 
DCs in cardiac allograft recipients treated with anti-ICAM-1 
and CTLA-4-Ig led to prolonged allograft survival.132 The 
test of autologous monocyte-derived Tol-DC in kidney 
transplant patients is a future prospect.133

Conclusion
It has been well established that transplantation tolerance 
requires very complex, multi-cellular, and three-dimensional 
interaction in the allograft and in the secondary lymphoid 
tissues. The cumulative interaction of various cells and its 
molecular signaling dictates the clinical advantage of the 
establishment of tolerance. Several of these interactions 
were discovered and also under investigation, which 
will guide us in developing the new strategies to control 
the inflammation and promote the allogenic tolerance in 
the clinic. Discovery of new regulatory immune cells for 
adoptive cellular therapy, neutralizing the inflammatory 
cytokines, blocking/antagonizing the activating receptors 
or disrupting the migration of inflammatory immune 
cells into the allograft may provide the new leads in the 

transplantation immunology.
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