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Acute inflammation and influenza: Innovative nanoparticle vaccination 
studies in a pig model
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History of flu pandemics, swine flu human 
sufferings
IAV infection is a serious respiratory tract problem 
responsible for a great number of deaths and 
hospitalizations worldwide. This year marked the 100th 
anniversary of the famous ‘Spanish flu’ outbreak. It  has 
been considered as the most devastating viral pandemic 
in human history responsible for death of over 50 million 
people.1, 2, 3 After the 1918 outbreak, four pandemic IAV 
infections  have been witnessed until now:  1957 Asian 
flu virus (H2N2), 1968 Hong Kong flu virus (H3N2), 
1977 Russian flu virus (H1N1) and 2009 swine-origin flu 
virus (H1N1).4, 5 It is apparent and has been accepted 
universally that swine is an intermediate ‘mixing vessel’ 
host, as it plays a central role in the reassortment of 
viruses of human, avian and swine origin, which eventually 
recombine to form pandemic virus.6, 7 For example, the 
1918 Spanish flu and the 2009 pandemic swine IAV (SIV) 
strains were present in swine for a very long period of time, 
before their emergence in humans.1, 4 Thus,  prevention of 
SIV transmission requires high priority. 8, 9

Pathogenesis of influenza and inflammation
IAV primarily infects the epithelial cell lining of the entire 
respiratory tract in humans, some mammalian species 
and birds. The infection happens rapidly after exposure to 
virus, within few hours to a couple of days, depending on 
the pre-existing immune status of the host, releasing loads 
of viruses that reinfect other naïve cells.10 The acute burst 
of virus in infected cells leads to the rapid simultaneous 
activation of many signal transduction pathways, 
resulting in robust inflammatory responses. Though such 
inflammation is required to attract the immune cells to the 
site of virus infection and activate the adaptive immunity 
for the efficient control of virus proliferation, the sudden 
burst of secreted cytokines and chemokines cause severe 
discomfort, lung damage, morbidity and even death. 
Many studies have reported a strong association between 
inflammation and severe cases of IAV infection.12-14 Once 
inside the epithelial cells of the respiratory tract, IAV is 
recognized by the pattern recognition receptors (PRRs) 
of innate immune cells. The PRRs sense the pathogen-
associated molecular patterns (PAMPs) present in 
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microorganisms including IAV. There are three types of 
PRRs that recognizes the danger signal of IAV infection: 
toll-like receptors (TLRs), nod-like receptors (NLRs) and 
retinoic acid-inducible gene-I-like receptors (RIG-I). All 
these receptors are activated during the IAV infection and 
replication, and act synergistically to activate transcription 
factors, including NF-kB and IRF3/7, resulting in rapid 
onset of proinflammatory response and local antiviral 
state.15-17 Furthermore, respiratory tract epithelial cells 
constitutively express TLR3, which is activated during 
IAV infection, contributing to the production of pro-
inflammatory chemokines and cytokines.18 The NLRs are 
responsible for the cleavage of pro-caspase-1 in its active 
form, which cleaves pro-IL-1b and pro-IL-18 into IL-1b 
and IL-18 that contribute to the inflammatory response 
following IAV infection.19 Overall, the signaling pathways, 
activated by all classes of PRRs, lead to the transcription 
of pro-inflammatory genes and production of large 
amounts of cytokines and chemokines that orchestrate 
the inflammation in the lungs during IAV infection. The 
equilibrium of the inflammatory response in the lungs is the 
determinant for the outcome of IAV infection.

Balance of adaptive immunity and ‘cytokine 
storm’ due to influenza
Proinflammatory cytokines, such as interferons, 
interleukins, chemokines and tumor necrosis factor, are 
the key molecules controlling the lung environment during 
IAV infection.20 These molecules are responsible for the 
communication between immune and non-immune cells, 
and can drive several important response steps against 
IAV, including epithelium activation, leukocyte recruitment, 
cell proliferation and differentiation and development 
of adaptive immunity.20 Proinflammatory cytokines and 
chemokines activate and recruit leukocytes into the lungs 
and airways, and these cells can produce large amounts 
of these molecules in a positive feedback loop. If this 
cycle is not controlled, it can lead to the exacerbation of 
the inflammatory response. The systemic presence and 
large levels of these signaling molecules lead to an event 
known as ‘cytokine storm’, which is one of the causes of 
increased mortality during severe IAV infections.21-23 The 
cytokine storm is correlated with the emergence of severe 
clinical symptoms, including alveolar hemorrhage, acute 
pneumonia, extensive pulmonary edema, acute respiratory 
distress syndrome and death.12 

Current flu vaccines and promising 
nanotechnology-based vaccines
Currently used flu vaccines induce virus strain-specific 

immunity against homologous virus infections. They are 
delivered by intramuscular route and thus provide weak 
mucosal immunity in the respiratory tract. Moreover, every 
year we need to match the dominant circulating virus 
strains in the vaccine formulation. If there is any mismatch 
in the vaccine virus, it can lead to severe inflammatory 
consequences especially in children, aged people and 
individuals with immune deficiencies. Therefore, developing 
a potent intranasal mucosal vaccine, which provides local 
immunity in the respiratory tract and increases the breadth 
of cross-protective immunity is highly warranted.  
 
Nanotechnology is an important endeavor of the 21st 
century. Nanometer scale materials have favorable 
physicochemical properties for mucosal vaccine delivery, 
as their size, shape, charge and composition could be 
designed.24-27 Several biodegradable and biocompatible 
natural and synthetic polymers are approved by US Food 
and Drug Administration and European Medical Agency 
for drug delivery.26-31 Soluble vaccine antigens are poorly 
immunogenic, but it can be made highly immunogenic by 
entrapping in polymer-based nanoparticles.32,33 Induction 
of immunity by nanoparticle-delivered (<500 nm) vaccine 
antigens is mediated through its particulate nature, efficient 
internalization, processing and presentation of antigens 
by professional antigen presenting cells such as dendritic 
cells, macrophages and B cells. 34-37

Promising candidate influenza nanoparticle 
vaccines studies in a pig model
Similar to humans, pigs are natural hosts for influenza 
and get infected by similar IAV subtypes such as H1N1, 
H3N2 and H1N2. Vaccines promoting protective immunity 
in pigs could help reduce/block the transmission of SIV to 
humans. The pig lung has marked similarities to that of 
humans in terms of tracheobronchial-tree structure, airway 
morphology, abundance of airway submucosal glands, and 
in producing cytokines and chemokines.38-40 The functions 
and electrophysiological properties of the pig airway 
epithelium and submucosal glands resemble to that of 
humans.41-43 The pig genome and protein sequence share 
high homologies (>80%) with the human counterparts, in 
contrast to mice (<10%). Porcine immune responses more 
closely resemble human responses than mouse responses 
with >80% of parameters studied. Mice showed only 
<10% similarity to humans.44, 45 The availability of swine 
genome sequence  and genetically modified pigs has 
further increased the use of the pig model in biomedical 
research.46-51 Like humans, pigs are outbred species, and 
pig models have been in use in research on several human 
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diseases.45-61 In summary, because of the anatomical, 
genetic and immunological similarities between pig and 
humans, pig can recapitulate pathogenesis of flu and 
specific mucosal immunity in the respiratory tract of 
humans.61-63 To demonstrate cross-reactive immunity 
and reduce inflammation in the lungs, we developed and 
evaluated a few biodegradable and biocompatible polymer 
nanoparticle-based vaccine delivery platforms in the pig 
model.

Influenza virus-conserved peptides have the potential 
to elicit increased breadth of immunity. But without the 
help of potent adjuvant and delivery system, they are 
poorly immunogenic. Biodegradable polylactic-co-glycolic 
acid (PLGA) nanoparticle-based vaccine was shown to 
enhance cross-presentation of antigens to CD8+ T cells by 
dendritic cells.36 In a study, norovirus P particle containing 
SIV M2e (extracellular domain of the matrix protein 2) 
chimera and highly conserved two each of H1N1 peptides 
of 2009 pandemic  and classical human influenza viruses 
were entrapped in PLGA nanoparticle. Pigs vaccinated 
with this vaccine formulation and challenged with a virulent 
and zoonotic SIV H1N1 had no clinical fever and any signs 
of flu. This candidate vaccine significantly increased the 
frequency of antigen-specific IFN-γ secreting CD4 and 
CD8 T cells in the lung lymphocytes.65 Thus, our initial 
study in pigs demonstrated that influenza H1N1 conserved 
peptides cocktail entrapped in biodegradable nanoparticle, 
delivered intranasally as mist, induced epitope specific 
effector and memory T cell responses. However, it failed to 
induce the mucosal and systemic antibody response. 

In another study, with a goal to improve the antibody 
response, we used killed SIV H1N2 entrapped in PLGA 
nanoparticle instead of peptides and delivered as intranasal 
mist to pigs.66 In vaccinated and virulent heterologous 
SIV H1N1 challenged pigs, clinical flu signs were absent. 
This was associated with reduced gross and microscopic 
inflammatory lung pathology and reduced viral antigenic 
mass in the lung sections with clearance of infectious 
challenge virus in most of the nanoparticle vaccinated pig 
lung airways. Immunologically, our candidate PLGA-based 
vaccine, irrespective of not boosting the mucosal antibody 
response, augmented the frequency of IFN-ϒ secreting 
total T cells, T-helper and cytotoxic T cells against both the 
vaccine and challenge SIV. Both these studies using PLGA 
nanoparticle delivery system demonstrated that intranasal 
vaccination using potent particle flu vaccine could induce 
strong cytotoxic T cell response and cross-protection against 
IAV-induced lung inflammation. Since the robust cytotoxic 

T cell response is capable of providing heterosubtypic 
immunity in influenza infections, PLGA-based vaccination 
approach forms an ideal platform to use the pig model 
for translation of particulate candidate flu vaccine to 
effectively control flu-induced inflammation in humans. 
However, upper respiratory tract infection and nasal virus 
shedding was not reduced due to the lack of induction of 
mucosal secretory IgA by PLGA particle delivery system. 
In yet another study with the goal to augment mucosal 
IgA response against IAV antigens, we adapted the novel 
mucoadhesive chitosan nanoparticle vaccine delivery 
platform to administer killed SIV H1N2 as intranasal mist.67 

We evaluated the immune response and cross-protective 
efficacy. Interestingly, pigs vaccinated with chitosan particle 
vaccine enhanced both serum IgG and robust mucosal 
secretory IgA antibody response in the nasal passage and 
in the lungs reactive to homologous (H1N2), heterologous 
(H1N1) and heterosubtypic (H3N2) IAV strains. In animals 
challenged with a zoonotic and virulent heterologous SIV 
H1N1 reduced severity of macroscopic and microscopic 
influenza-associated inflammatory pulmonary lesions was 
noted. Importantly, the infectious SIV titers in nasal passage 
and lungs were significantly reduced. In addition to B cell 
response, the T cell response was also elicited in pigs 
received chitosan particles system, but it was not as robust 
as PLGA particle delivery system. The  increased T-cell 
response  was detected  especially in the lung draining 
tracheobronchial lymph nodes of pigs. Thus, our study 
revealed that chitosan-based influenza nanovaccine may 
be an ideal candidate vaccine platform, and pig is a useful 
animal model for preclinical testing of particulate intranasal 
human influenza vaccines. This vaccination strategy may 
help to mitigate inflammation in the respiratory tract and 
transmission of genetically variant emerging field viruses 
to susceptible people in the real field scenario. 

Conclusion
Influenza-induced acute inflammation leading to severe 
morbidity and mortality can be mitigated using novel 
intranasal vaccine delivery platforms, which induce robust 
local mucosal immunity in the respiratory tract. Swine is 
an ideal animal model system to conduct intranasal flu 
vaccine preclinical trials to successfully translate the novel 
human flu vaccine formulations.    
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