
Indian Journal of Inflammation Research
 Page 1 of 17

 IJIR. 2017;(1)1:R2

Plasticity of Th17 and Tregs and its clinical importance as therapeutic 
target in inflammatory bowel disease
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Introductıon 
The mammalian gastrointestinal (GI) tract is a highly 

complex and compartmentalized organ with varied 

functions.1 Apart from the role of the GI tract in the digestion 

and nutrient uptake, gut-associated tissues constitute the 

highest number (~70%) of innate and adaptive immune 

cells in the body.2-4 The two common inflammatory bowel 
diseases (IBD) are ulcerative colitis (UC) and Crohn’s 

disease (CD). UC affects only the colon, but CD affects 
most parts of intestine and colon. The major differences 
in UC and CD are listed in Table 1. According to a 2010 

estimate on IBD burden, India is the second most prevalent 

country (1.4 million affected cases) after the USA (with 
1.64 million cases).5 In India, the mean age of diagnosis 

of UC and CD was 38.5 and 35.9 years, respectively.5, 6 

Indian UC patients show a positive family history of about 

1.5-2.3%, similar to other Asian countries like Sri Lanka, 

Japan, South Korea and China.5, 6

Intestinal epithelial cells form a physical barrier that 

separates trillions of luminal microflora and the exogenous 
environment from underlying lamina propria (LP).7 Detection 

of pathogens by host antigen-presenting cells (APCs) 

leads to cytokine secretion, recruitment, and polarization 

of CD4+ T cells. Depending on the cytokines present in 

the microenvironment, CD4+ T cells can differentiate into 
Th1, Th2, and Th17 and Treg cells. Th1 cells express 

lineage-specific transcription factor T-bet (TBX21) and 

secret IFN-γ and help in controlling intracellular bacterial 
and viral infection. Th2 cells express lineage-specific 
transcription factor GATA3 and produce IL-4 and IL-13, 

and help in humoral immunity and controlling extracellular 

parasites.8 Th17 cells, marked by transcription factor 

RORγt, produce IL-17 and IL-21 and help in controlling 
extracellular pathogens, fungi and promote autoimmunity. 

Tregs, expressing transcription factor FoxP3, controls 

the immune response and help in maintaining peripheral 

tolerance.9

Equilibrium between regulatory CD4+ T cells (Tregs) 

and effector CD4+ T cells is critical for balancing gut 

homeostasis and inflammation. Increasing evidence 
has proven that among various effector CD4+ T cells, 

Th1 and Th17 cells are the most important CD4+ T cell 

subset required to confer the protection against microbial 

pathogens at mucosal surfaces.10, 11 Th17 cells abundantly 

exist in the LP of the small intestine12 and they not only 

protect the host against infection, but their hyperactivation 
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Characteristic features Ulcerative colitis Crohn’s Disease

Pathological features and 
distribution

Continuous inflammation of the inner 
most epithelial layer of colon and the 

rectum and show superficial ulcers in the 
mucosa and submucosa.178 

Focal, patchy mucosal inflammation all 
along the gastroenteric (GI) tract and 
show deep ulcers and cobblestoned 

appearance.179

Histopathologic features No granuloma, abundance of 
lymphocytic population.178, 180

Shows granuloma and increased 
polymorphonuclear cells.179, 180 

Symptoms Bloody diarrhea, abdominal cramps, 
anemia, weight loss, fever and fatigue.180

Diarrhea, abdominal cramps, anemia, 
weight loss, fever and fatigue.179, 180

Associated complications Severe bleeding, toxic acute colonic 
distension, rupture of the bowel and 

colon cancer.180

Stenosis, abscess, fistulas andmcolon 
cancer.180 

Risk factor Smoking: Primarily affects non-smokers 
and ex-smokers.181, 182

Smoking: Both active and passive smokers 
are more susceptible.181

Appendectomy: Removal of an inflamed 
appendix in early life is associated with 
a decreased incidence, milder disease, 

and delayed onset of ulcerative colitis.183

Appendectomy: Removal of an inflamed 
appendix in early life is associated with an 
increased incidence of Crohn’s disease.184

Dietary habits association Food enriched with saturated fats, 
polyunsaturated fatty acids, omega-6 

fatty acids and meat increases the risk of 
ulcerative colitis.185 Vegetable rich food 

reduces the risk of ulcerative colitis.185, 186

Food enriched with saturated fats, 
polyunsaturated fatty acids, omega-6 fatty 

acids and meat increases the risk of Crohn’s 
disease.185 Dietary fiber and fruit reduces 

the risk of Crohn’s disease.185, 186

Genetic associations Genetic variation in NOD2 and PTPN22 
are protective in ulcerative colitis 

patients.125

Genetic variation in NOD2 and PTPN22 
increases the risk of Crohn’s disease.125

Biased T cell response in the 
affected tissue

Atypical Th2 response (IL-5 producing) 
and IL-13 producing non-classical 

NKT cells mediate apoptosis of colonic 
epithelial cell breaks the epithelial 

barrier system.187, 188 IL-21-expressing 
CD4+CXCR5+ Tfh cells are also 

increased in the biopsy samples of 
ulcerative colitis.189

Biased Th1/Th17 response.187, 190 
Additionally, IL-21-expressing CD4+CXCR5+ 

Tfh cells are also increased in the biopsy 
samples of Crohn’s disease patients.191

Cytokines involved in pathology Predominantly IL-4, IL-5 and IL-13.187 
Recently, IL-9 level was also found 
increased in the ulcerative colitis 

patients.192

Predominantly IFN-γ, TNFα and IL-17A.187, 

190

T helper cell-associated response Lamina propria T cells express IL-5, IL-
13 and GATA3 with low IL-4.187, 188 IL-22-

expressing Th22 cells are significantly 
reduced in ulcerative colitis patients.193

Lamina propria T cells express IFN-γ, IL-
12Rβ2, STAT4 and T-bet.187, 194 No aberrant 

reduction of Th22 cells found in Crohn’s 
disease patients.193

Innate lymphoid cells Less abundance of CD56-IL17A+IL-17F+ 
ILCs195 and CD3-CD56+NKp46+ (IFN-γ-

secreting) ILCs.196

Increased abundance of CD56-IL17A+IL-
17F+ ILCs195 and CD3-CD56+NKp46+ (IFN-

γ-secreting) ILCs.196

Role of intestinal epithelial cells Increase IL-33 (alarmin) and IL-37 
production was observed in the intestinal 

epithelial cells (IECs) of ulcerative 
colitis patients.197 IL-33-deficient mice 

or transgenic IL-37 mice protected from 
experimental colitis.198, 199

Table 1: Pathological and molecular differences between ulcerative colitis and Crohn’s disease
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also cause autoimmune inflammation in the gut.13 On the 

other hand, Tregs are critical in maintaining the peripheral 

tolerance as well as they function as dedicated suppressor 

cells of immune systems. The Tregs and Th17 cells are 

characterized by several molecular markers (Fig. 1). The 

microbiota in the gut has a very strong influence on the 
frequency of Th17 and Treg cells. It has been shown that 

germ-free animals have an unbalanced generation of Th17 

cells in the gut.14-16 In germ-free mice, feeding of segmented 

filamentous bacteria (SFB) induces IL-17- and IL-22-
producing Th17 cells,17 whereas the mixture of Clostridium 

species can cause higher differentiation of Tregs in the 

gut.18, 19 These studies suggest that gut microbiota helps 

in shaping the gut immunity. Similarly, Candida albicans, 

a fungal infection, increases the production of IL-12 by 

dendritic cells, thereby promoting the differentiation of 
IFN-γ-producing Th1 cells.20 β-glucan, a fungal cell wall 
component, promotes Th17 cell differentiation by enhancing 
the production of prostaglandin E2 (PGE2).21 Several other 

dietary components such as vitamin A, vitamin B3 (niacin), 

vitamin D, tryptophan and food fibers are known to affect the 
CD4+ T cell differentiation and plasticity.22 Several extrinsic 

and intrinsic factors that can affect the development and 
pathogenesis of IBD, and many of these factors influence 

Fig. 1: The phenotype of Th17 and Treg cells

Immunotherapy attempts Anti-IL-13 (anrukinzumab and 
tralokinumab) failed to show efficacy 
in phase 2 clinical trials of ulcerative 

colitis patients.200 Anti-IL-4/13 bi-specific 
antibody showed better protection in 
oxazolone-induced murine colitis.201

Anti-IFN-γ (fontolizumab) did not show 
efficacy in phase 2 trial,202 while anti-TNF-α 

(infliximab) showed some efficacy.203 
Humanized anti-IL-17A (secukinumab) 
did not show promise in phase 2 trials 
rather induced adverse side effects in 

Crohn’s disease patients.137 Recombinant 
human IL-10 therapy was ineffective.204 

SMAD7 antisense oligonucleotide therapy 
(improves TGF-β-dependent Treg mediated 

suppression) showed some promise in 
phase 1 and phase 2 trial.205 Anti-p40 

subunit of IL-12 and IL-23 (briakinumab 
and ustekinumab) showed better results 
in Crohn’s disease patients that did not 

respond to anti-TNF-α treatment.206 
Ustekinnumab (September 2016) approved 

by US FDA for treatment for CD patients 
who are refractory to conventional and/or 

anti-TNF therapy. 

(A) Variety of receptors, transcription factors, cytokines and chemokines associated with the Th17 cell. (B) Variety of receptors, co-stimulatory molecules, 

regulatory molecules, transcription factors and cytokines associated with the Treg cell
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the developmental and functional plasticity of Th1, Th2, 

Th17 and Treg cells (Fig. 2). The present review discusses 

the cellular and molecular mechanisms that influence the 
plasticity of Treg and Th17 cells and its importance in IBD. 

Differentiation and function of Tregs
There are several mechanisms by which intestinal immune 

homeostasis and tolerance are regulated, and among 

them, FoxP3-expressing CD4+ Tregs play a major role. 

Depletion of the CD25+CD4+ Tregs leads to the generation 

of multi-organ autoimmunity including gastrointestinal 

inflammation.23 Further, co-transfer of CD4+CD25+ Tregs 

along with CD4+CD45RBhi naïve T cells into RAG1-/- 

mice could suppress the chronic intestinal inflammation 
caused by excessive differentiation of naïve T cells into 
inflammatory effector cells, indicating the importance of 
Tregs in controlling the inflammation and autoimmunity. 
FoxP3 is a crucial transcription factor required for 

differentiation of bonafide Tregs,24-26 and a mutation in 

the mouse FoxP3 gene leads to a scurfy phenotype, 

which is a multi-organ inflammatory condition including 
gut inflammation.27 Moreover, mutations in the human 

FoxP3 locus also result in an immunodysregulation, 

polyendocrinopathy, enteropathy and X-linked (IPEX) 

Naïve CD4 T cells under influence of TGF-β and IL-2 differentiate into the induced Treg (iTreg) and expresses FoxP3 and help in establishing the 

peripheral tolerance. Under influence of inflammatory signal, iTreg can be differentiated into FoxP3 and RORγt-expressing Treg-Th17 cells. Naïve 

CD4+ T cells under influence of TGF-β, IL-6 or IL-1β and IL-23 can differentiate into Th17 or Th1-like Th17 cells, respectively. In the presence of high 

concentration of CCL20, iTreg can also be differentiated into Treg-Th17 cells. Th17 cells can also differentiate into pathogenic Th1-like Th17 cells by 

CCL20 and IL-23 stimulation in the gut. Th17 cells under the influence of TGF-β can differentiate into the IL-10 producing exTh17/Tr1 cells and that 

shows regulatory function in the gut. Th1-like Th17 cells under influence of IL-12 rich environment can differentiate into exTh17-Th1 cells and acquire 

strong pathogenic phenotype

Fig. 2: Plasticity of Treg and Th17 cells in gut inflammation and inflammatory bowel disease
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syndrome.28-30 Together, these observations very well 

establish the key role of FoxP3+ Tregs in maintaining the 

immune tolerance throughout the body including the gut.

Almost every organ of the human body has FoxP3+ 

Tregs and account for about 5-10% of total CD4+ T cells 

that express FoxP3 in the peripheral blood. Interestingly, 

the intestinal lamina propria (LP) contains much higher 

numbers of Tregs (~30% of CD4+ T cells in the colonic LP 

and ~20% in the small intestinal LP).31-34 Intestinal Tregs 

regulate gut immune responses through various molecular 

mechanisms. Intestinal Tregs constitutively express 

suppressive molecule CTLA4, co-stimulatory molecule 

ICOS, and anti-inflammatory cytokines such as TGF-β and 
IL-10, and these molecules inhibit the immune response 

against dietary antigens and intestinal microbiota.35-38 

When the gut microbiota is absent in the case of germ-

free mice or antibiotic-treated mice, the number of colonic 

Tregs severely impaired, and moreover Tregs cells present 

in the colon LP show significant low expression of CTLA4, 
ICOS, and IL-10, indicating impaired regulatory function.18, 

31-33, 39 Further, when germ-free mice were administered 

with sterile food, the number of small intestine Treg was 

significantly compromised, but a number of colonic Tregs 
were unaffected.39 These findings suggest that dietary 
antigens and microflora help in the generation of intestinal 
Tregs. 

There are two types of Tregs. Tregs generated in the 

thymus are named as natural Tregs (nTregs), and Tregs 

generated in the periphery called as induced Tregs (iTregs). 

The intestinal microenvironment favors the generation 

of iTregs. Adoptive transfer of naive FoxP3−CD4+ T cells 

isolated from TCR-transgenic mice into wild-type mice, 

followed by oral administration of cognate antigen, 

resulted in the accumulation of iTregs.40, 41 Moreover, 

transfer of FoxP3+ nTregs alone to FoxP3-deficient mice 
could not completely overcome the mortality caused 

by FoxP3 deficiency, underlining the non-redundant 
immunoregulatory role of iTreg cells.42 Even though iTregs 

and nTregs share same phenotype and function, there are 

distinct differences between them.43-46 FoxP3 expression 

is regulated by three different conserved non-coding 
sequences (CNS), CNS-1 to CNS-3. Structure of Foxp3 

gene regulatory elements is shown in figure 3. In nTregs, 
initial induction of FoxP3 expression is mediated by CNS-

3, and CNS-3 recruits the transcription factor REL to the 

FoxP3 locus. The deficiency of CNS-3 leads to significantly 
impaired nTregs development, but not iTregs.47, 48 On the 

other hand, CNS-1 is required for iTreg development, but 

not CNS-3. 49, 50 CNS-1 acts as a response element for the 

TGF-β–SMAD signaling pathway51 and it also contains 

the binding site for the retinoic acid receptor, which is a 

heterodimer consisting of retinoic acid receptor (RAR) 

and retinoid X receptor (RXR).52 Deficiency of CNS-1 

Transcription start site (TSS) is marked as +1. Non-coding enhancer elements (CNS1 and CNS 2) are located between -2a and -1 intron. CNS3 is located 

between exon 1 and exon 2. Activation of proximal promoter, CNS2 and CNS3 help in the generation of iTreg and nTreg. Demethylation of CpG islands 

present at upstream sites (-5.7kb) and CNS2 region play role in stabilizing the FoxP3 expression. Binding of various transcription factors at specific sites 

is given in boxes.

Fig. 3: Structure of murine Foxp3 regulatory elements
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disturbs iTreg development in the gut and lungs, but nTreg 

remains unaffected.53 Interestingly, CNS-1 deficient mice 
spontaneously induce Th2-mediated pathology in the gut 

and the lungs,53 demonstrating the significance of iTreg 
cells in the suppression of Th2-mediated immune response 

at mucosal sites. 

Comparisons between in vivo iTregs and in vitro FoxP3-

transfected CD4+ T cells indicated significant differences 
in gene expression patterns.54 For Treg-lineage 

commitment and their suppressive function, Treg-specific 
epigenetic changes are also essential.26, 55 For stable Treg 

differentiation and function CNS-2 of the FoxP3 gene locus 

and various other regulatory elements of Treg-specific 
genes, such as Ctla4 and glucocorticoid-induced TNFR-

related (GITR) are also required to be fully demethylated. 

The demethylation of these Treg-specific gene loci are 
independent of FoxP3 expression.56 IL 2 signaling activates 

STAT5 in CD4+ T cells and activated STAT5 binds to the 

CNS-2 enhancer of FoxP3 locus. Demethylation of CNS-2 

results in a stable expression of FoxP3.57 With the help of 

transcription factor Runx1, FoxP3 itself can bind to its own 

locus at demethylated CNS-2, which further stabilizes the 

expression of Foxp3.56-58 The CNS-2-deficient Tregs readily 
lose FoxP3 expression in response to proinflammatory 
cytokines and strong T cell receptor (TCR) stimulation, 

especially in the intestine, liver, and lungs, suggesting its 

important role in the stability of Treg.49, 57 

Even though Tregs maintain their phenotypic stability, 

they may undergo functional plasticity to respond to the 

changing microenvironment. Foxp3+ Tregs can express 

effector T cell-specific transcription factors. Approximately, 
65% of the Treg cell population in the colon and around 

35% in the small intestines express RORγt.14, 15, 59 Under 

germ-free conditions, RORγt+ Tregs disappear, and they 

do not express neuropilin-1 (NRP1) and Helios, a marker 

for nTreg indicating that they are iTreg cells generated 

in response to microbial antigens.14, 15, 59 A significant 
decrease RORγt+ Tregs in the mice having a Treg-specific 
deficiency of STAT3 indicates that STAT3 is required for 
the generation of RORγt+ Treg lineage.15  Proinflammatory 
cytokines such as IL-6 and IL-23 are known to activate 

STAT3 followed by RORγt60, but the precise mechanism 

of differentiation of RORγt+ Treg is still not very clear. Apart 

from the RORγt expression, nearly all colonic Tregs show 
a CD44hi effector Treg-like phenotype and maintenance 
of this phenotype requires continuous TCR signaling and 

interferon regulatory factor 4 (IRF4) expression.61

LP CD103+ DCs are a potent antigen presenting cells 

(APCs), and they extend their dendrites through the IEC 

layer to sample luminal antigen.62 These DCs can also 

procure luminal antigens by a distinct transport system 

through goblet cells.63 Apart from antigen presentation, 

CD103+ DCs also express αvβ8 integrin that converts 
latent TGF-β into its active form and also express enzyme 
alcohol dehydrogenase (ALDH), which break down vitamin 

A into retinoic acid.41, 64 By producing active TGF-β and 
retinoic acid, CD103+ DCs promote the biased generation 

of Tregs.41, 64 Thus, the microenvironmental cues in the 

LP and mLNs lead to the differentiation, stabilization, 
proliferation and functional plasticity of Tregs to maintain 

intestinal immune homeostasis.

 

Differentiation and function of Th17 cell 
The IL-17A-producing Th17 cells are ubiquitously present 

in the GI tract of patients with IBD.65  The enhance levels 

of serum and mucosal IL-17A is reported in UC and CD 

patients.66 Further, gene polymorphism at IL-17A locus has 

been shown to link with UC susceptibility,67 indicating the 

importance of Th17 cells in the gut inflammation. IL-17A is 
a proinflammatory cytokine and induces strong neutrophil 
infiltration and granulopoiesis in the intestine to clear 
bacterial and fungal infections along with promoting barrier 

function of IECs.68 Even though Th17 cells are specially 

programmed to respond against mucosal pathogens, they 

are also known to play the central role in the pathogenicity 

of several autoimmune diseases including autoimmune 

colitis.69-71 TGF-β1 along with IL-6 efficiently induces Th17 
differentiation in vitro.72, 73 Multiple studies have shown that 

Th17 differentiation can also be promoted by IL-21.74-76 IL-

21 teams up with TGF-β to induce expression of RORγt, 
a master regulator of the Th17 cells followed by IL-17A 

production, and it also imparts the IL-23R expression on the 

surface.76, 77 IL-21 suppresses the differentiation of TGF-β-
induced FoxP3+ Tregs in an IL-6-independent manner to 

further support the Th17 polarization.74 The IL-6 elicits IL-

21 production in Th17 cells in a c-Maf-dependent manner,78 

and IL-21 functions in an autocrine fashion to upregulate 

IL-23R expression. c-Maf is also known to regulate IL-

10 expression during Th17 polarization.79 IL-23-IL-23R 

interaction stabilizes Th17 lineage by maintaining the 

expression of RORγt and also enhances the pathogenicity 
of Th17 cells by inducing the expression of IL-22, GM-CSF, 

and IL-23R in a Blimp-1-dependent mechanism.80 Notably, 

TGF-β1 and IL-6-induced Th17 cells are not competent 
enough to induce autoimmunity when adoptively transferred 

in vivo, as they co-produce suppressive cytokine IL-
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10.81 IL-23 treatment to TGF-β1 and IL-6 induced Th17 
cells result in the enhanced ability of Th17 cells to cause 

autoimmunity.82 Further, the polarization of murine Th17 

can also be mediated in the absence of TGF-β1 and can be 
induced by the combination of IL-1β, IL-6, and IL-23 or with 
TGF-β3 and IL-6.83, 84 Thus, differentiation of Th17 cells is 
dependent on distinct combinations of cytokines present in 

the microenvironment. As described earlier RORγt acts as 
a master regulator of Th17 cells, but it should cooperate 

with an array of other transcription factors like STAT3, 

interferon regulatory factor 4 (IRF4), and basic leucine-

zipper ATF-like transcription factor (BATF) to switch on the 

Th17 polarization program. 

IL-6 and IL-23 activate STAT3 in the CD4+ T cells and 

activated STAT3 is indispensable for the differentiation 
of Th17 cells,85 as the expression of RORγt and IL-17 
is STAT3-dependent.77 CD4+ T cells-specific deletion of 
STAT3 leads to hampered in vivo IL-17A production and 

suppression of IL-17A-mediated pathology.86-88 STAT3 

binds to the promoter as well as enhancer regions of many 

Th17-associated genes.88 IL-17A and IL-17F loci possess 

several STAT3-binding sites not only in the promoter region 

but also in the CNS located in the intergenic region.89 Apart 

from IL-17, STAT3 regulates the expression of IL-21, IL-

21R, and IL-23R in CD4+ T cells, and thus help polarization 

of Th17 lineage.84 STAT3 also controls the expression 

of transcription factors like BATF and IRF4, which are 

necessary for the polarization of Th17 cells.88

T cell receptor (TCR) signaling in CD4+ T cells induces 

expression of BATF, a member of the activator protein 1 

(AP-1) transcription factor family.90, 91 BATF is essential 

for Th17 polarization, as BATF-deficient mice have 
significantly reduced susceptibility towards Th17-mediated 
experimental autoimmune encephalomyelitis (EAE).91 

BATF-deficient murine CD4+ T cells possess normal TGF-β 
and IL-6 signaling and can express RORγt during T cell 
development, but they fail to sustain RORγt expression.91 

This phenotype of BATF-deficient murine CD4+ T cells can 

be partially rescued by overexpressing RORγt, indicating 
that RORγt and BATF both are essential to induce Th17 
polarization.91 Further, BATF forms a dimer with another 

transcription factor JUN-B and regulates expression of IL-

17, IL-21, and IL-22 in Th17 cell.91 

Like BTAF, transcription factor IRF4 is also critical for 

the Th17 differentiation, which was confirmed by the fact 
that IRF4-deficient mice are resistant towards EAE and 

have a defect in the generation of Th17 response due to 

hampered RORγt expression.92 Incomplete rescue of IL-17 

expression in IRF4−/− CD4+ T cells by over-expression of 

RORγt indicates the need for both RORγt as well as IRF4 
in the establishment of the Th17 phenotype.92 A recent 

study showed that the BATF and IRF4 are initial factors 

that cooperatively bind and make chromatin accessible for 

RORγt binding.93, 94 Hypoxia-inducible factor-1α (HIF-1α) 
is a responder transcription factor of hypoxia and induced 

by hypoxia conditions associated with tissue inflammation, 
TCR signaling and IL-6 signaling in a STAT3-dependent 

manner.95 HIF-1α induces expression of RORγt and further 
team up with p300 and RORγt to induce expression of IL-
17A.95 Runx family includes set of transcription factors that 

are involved in CD4+ T cell development and differentiation. 
Mammalian Runx family possesses three transcription 

factors Runx1, Runx2, and Runx3. Runx1 is essential for 

thymic T cell development96 and also involved in Th17 

differentiation.97 Runx1 interact with RORγt and bind on the 
IL-17 promoter to control the Th17 differentiation.97

The aryl hydrocarbon receptor (AHR) is an evolutionarily 

conserved transcription factor98, and it can bind to a 

variety of small synthetic compounds and natural ligands. 

Th17 cells express AHR, and upon ligand binding, AHR 

undergoes conformational change.99 Activated AHR 

migrates to the nucleus and enhances the production 

of IL-17A, IL-17F, and IL-22.99-101 AHR-deficient mice 
develop less severe EAE indicating the role of AHR in 

Th17-mediated pathogenicity.100 TCR signaling enhances 

intracellular Ca++ that results in the dephosphorylation 

and activation of nuclear factor of activated T cells (NFAT) 

transcription factors. Human and murine IL-17 promoter 
has multiple binding sites for NFAT.102, 103 The presence of 

NFAT1 in CD4+ T cells is associated with higher expression 

of IL-17.104 Further, factors that can oppose the NFAT 

binding to DNA can suppress the IL-17 expression. 

Th17 and Treg plasticity and its clinical importance
Intestinal CD4+ T cells have to exhibit a functional 

plasticity to deliver a quick response to ever-changing 

microenvironmental cues. Tregs and Th17 cells are 

functionally antagonistic to each other, but they display 

several common features. Treg and Th17 differentiation 
shares some common signaling mechanisms and 

key transcriptional factors. These two populations 

are accumulated abundantly at the mucosal sites like 

intestine.77, 105 TGF-β, a pleiotropic cytokine, plays an 
important role in the differentiation of both the subsets. 
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Even though TGF-β is indispensable for the generation of 
Tregs, it is redundant for Th17 differentiation.106, 107 Thus, 

intestinal CD4+ T cells are a mixture of functionally and 

phenotypically intermediate subpopulations along with the 

conventional Tregs and Th17 cells and can interconvert 

their effector or suppressor function in response to different 
environmental cues.108 The phenotypic plasticity of Tregs 

and Th17 cells and its role in the gut microenvironment are 

illustrated in fig. 2.

Various studies have proven that FoxP3+ Tregs are neither 

phenotypically nor functionally stable and they can trans-

differentiate into Th17-like cells. Treg plasticity was first 
reported in murine system, where murine Foxp3+CD4+ 

cells could convert to Th17 cells by IL-6 in the absence of 

TGF-β,109-113 and the observation was further reproduced in 

humans too.109, 114, 115 These Th17-like Tregs produce IL-17 

and even though they possess the suppressive capacity 

in vitro, upon treatment with IL-1β and IL-6, the cells 
lose suppressive capacity.115 Under arthritic conditions, 

CD25loFoxP3+CD4+ T cells lose FoxP3 expression and 

infiltrate into the inflamed joints.116 Adoptive transfer 

of these cells into mice leads to the generation of rapid 

and severe arthritis.116 IL-17-producing FoxP3+CD4+ T 

cells are also prevalent in IBD patients.109, 117 These cells 

have enhanced responsiveness towards Th17-produced 

cytokines in IBD patients, and it is yet elusive if they retain 

their suppressive function.117 This context-dependent 

plasticity adds to the complexity of the functional and 

phenotypic overlap between Treg and Th17 cells observed 

in IBD.117-119 TGF-β1 signaling plays very important role in 
the plasticity of Th17, Tregs and Th17-Tr1 cells. TGF-β1 
signaling molecule SMAD7, which negatively regulates 

the activation of SMAD2/3 complex, have been targeted 

to control IBD. Mongersen (GED 0301), a specific 
SMAD7 anti-sense oligonucleotide that targets SMAD7 

mRNA for degradation was used in the phase 2 clinical 

trial in CD patients by formulating a way to deliver into 

the lumen of ileum and colon. The Mongersen showed 

clinical remission (55% with 40mg and 65% with 160mg) 

as compared to placebo (10%; p<0.001).120, 121 Currently, 

the two-randomized multicenter phase 3 clinical trial as 

induction and maintenance therapy for active CD (Clinical 

trial registry number NCT02685683 and NCT02641392) as 

well as an open-label phase 3 trial in CD (NCT02685683) 

and a multicenter phase 2 trial on UC (NCT02601300) with 

mongersen are in progress.122 

Recently, Aiolos, a member of the Ikaros family, has been 

found to promote Th17 differentiation by suppressing 

IL-2 production.123 Interestingly, the Helios-deficient iTreg 
expressed high amounts of Aiolos, and these Helios-Aiolos+ 

FoxP3+CD4+ T cells express high amount of IL-17 and have 

hampered suppressive function.124 Moreover, polymorphism 

at Aiolos locus has been shown to associate with CD and 

UC.125 Thus, Aiolos may be an important mediator of Treg-

Th17 plasticity during intestinal inflammation. Basu et 
al. (2015) showed that SOCS3, an inhibitor of STAT3, is 

repressed by IL-1β leading to a disturbed STAT3/STAT5 
ratio, resulting in Th17 generation.126 This can explain 

the mechanism of trans-differentiation of FoxP3+ Tregs 

to FoxP3+IL-17+ CD4+ T cells by exogenous IL-1β.126 

Many of the drugs/biologics that target the plasticity of 

helper CD4 T cells such as tocilizumab (block IL-6R 

signaling), tofacitinib (an oral small-molecule Janus 

kinase 3/1 inhibitor) along with drugs that target TNF-α 

(infliximab, adalimumab and golimumab) and integrin 
α4β7 (vedolizumab) were investigated as treatment for 
IBD.22, 127 IL-6 signaling plays very important role in Th17 

cell differentiation, and IL-6 and soluble IL-6 receptor (sIL-
6R) is highly expressed in patients with IBD. Toclizumab 

(humanized anti-IL-6R mAb), olokizumab (CDP6038), 

clazakizumab (BMS945429) and PF-04236921 (human 

IL-6 mAb) are the antibodies developed against IL-6.122 

The Janus kinases (JAK1, 2, 3 and TYK2) are upstream 

to STAT3 signaling and they control the differentiation of 
Th17 and Treg cells. Several small molecule inhibitors 

(>1kDa), that can diffuse in the cells are developed to target 
Janus kinases that may be effective in controlling several 
autoimmune diseases including IBD. Tofacitinib, an oral 

small molecule that inhibits mostly JAK1 and JAK3, and 

prevents signaling from IL-2, IL-4, IL-6, IL-7, IL-9, IL-15, 

IL-21 and IFN-γ, have a very potent immunosuppressive 
function.128 The phase 3 clinical trial with tofacitinib 10mg 

twice daily (BID) for 8 weeks in UC patients showed clinical 

remission (18.5%), clinical response (59.9%), mucosal 

healing (31.3%) compared to placebo (8.2%, 32.8% and 

15.6%, respectively).129, 130 The other selective JAK1 

inhibitors namely filgotinib (GLPG0634), JNJ-54781532 
(ASPK015K) and upadacitinib (ABT-494) are in phase 

2 and phase 3 studies for UC and CD.128 The filgotinib, 
an oral JAK1-small molecule inhibitor with better safety 

profile,131 is currently being investigated in two phase 3 

trials in CD patients (NCT02914561 and NCT02914600) 

and two phase 3 trials in UC patients (NCT02914522 and 

NCT02914535).

There are several studies that showed a subset of Th17 

cells that can produce IFN-γ along with IL-17 in the 
inflamed intestine and these cells are called as Th1-like 
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Th17 cells.132, 133  These Th1-like Th17 cells can either retain 

or lose their capacity to produce IL-17A while acquiring 

expression of IFN-γ.134  This process is mediated by IL-

12 and IL-23 in a STAT4 and T-bet-dependent manner. IL-

17-IFN-γ+ Th17 cells lack colitogenic potential. However, 

IL-17+IFN-γ+ Th17 cell can induce experimental colitis.135  

A phase 2 clinical trial involving active CD patients has 

evaluated laquinimod, an oral small molecule that suppress 

the Th1 and Th17 cells and drive the differentiation of 
Th2 cells.136 Recently, FOS-like antigen 2 (Fosl2) has 

been discovered as a key regulator of Th17 plasticity.94 

Culturing of Fosl2-deficient CD4+ T cells under Th17 

lineage-specific conditions have induced their conversion 
to IL-17-producing cells expressing FoxP3.94 Interestingly, 

lack of Fosl2 also induced significant production of IFN-γ in 
Th17 as well as Th2 cultures, specifically when Th17 cells 
were subsequently exposed to Th1-specific conditions.94 

Genetic, epigenetic, environmental, and dietary factors 

influence the development of IBD and these factors may 
also have the direct or indirect effect on function and 
plasticity of Treg and Th17 cells.  Although, Th17 cells 

have a good contribution to the development of IBD, 

blocking of IL-17A with mAb secukinumab fails to inhibit 

IBD.137 Similarly, IL-17 receptor monoclonal antibody 

brodalumab fails to give any relief to IBD.138 The clinical 

trials of anti-IFN-γ mAb fontlizumab showed no benefits, 
suggesting that targeting Th17 and Th1 cells alone is not 

very effective in IBD.139 It has been shown that UC patients 

had an increased frequency of CCR6+RORγt+ CD4+ T 

cells in the peripheral blood as compared to the healthy 

individuals.109, 140 IBD patients had a higher frequency of 

FoxP3+IL-17+ and IL-17+IFN-γ+ CD4+ T cells as compared 

to healthy individuals.141, 142  The IL23-receptor expresses 

on pathogenic Th17 cells and is composed of two 

subunits IL-12 receptor-beta1 chain (IL12Rβ1) and IL-23 

alpha subunit (IL23A).143-145 The IL-12Rβ1 subunit is also 

expressed on Th1 cells. Currently, several of antibodies 

that target IL-12 and IL-23 such as ustekinumab (fully 

human anti-p40 mAb), AMG139/MEDI20170 (fully human 

anti-p19 mAb), BI-655066 (fully human anti-p19 mAb) 

and LY3074828 (humanized anti-p19 mAb) are being 

investigated in phase 2 and phase 3 clinical trials in UC and 

CD patients.122 Targeting p40 subunit (shared by IL-12 and 

IL-23 cytokines) with mAb ustekinumab, an FDA approved 

biologic, has been demonstrated to have an inhibitory role 

in IBD patients.146 Risankizumab, a humanized monoclonal 

antibody against p19 subunit of IL-23, has a selective 

advantage of blocking only IL-23, but not IL-12 molecule.128, 

147 A multicenter phase 2 clinical trial with risankizumab in 

CD with 600 mg mAb showed clinical remission of 42% 

compared to the placebo 20.9% (p=0.025) with acceptable 

safety profile.128, 148 Likewise, any drug, biologics or small 

molecule inhibitors that target the plasticity of Th17 and 

Treg may shed a new light on controlling the IBD. 

The unique inflamed microenvironment in the gut and 
associated lymphoid tissues of IBD patients stimulate 

the generation of selective CD4+ T cell subsets and also 

tune the plasticity of these cells. Various triggers such as 

CD103+ dendritic cells (DCs) in response to commensal 

antigens can be programmed to produce retinoic acid, 

TGF-β and IL-10, and promote the differentiation of naïve 
CD4 T cells into FoxP3-expressing iTregs. Similarly, short 

chain fatty acids (SCFAs) such as butyrate and propionate, 

produced by gut microbiota during the digestion of fiber-
rich food, vitamin B3 and D3, low-affinity aryl hydrocarbon 
receptor (Ahr) ligand (2,3,7,8-tetrachlorodibenzo-p-dioxin), 

and these molecules are known to drive the differentiation 
of iTreg differentiation. The folic acids-derived signals, 
delivered to the folate receptor 4-expressing nTregs, 

support their survival in the intestine. Moreover, most of 

the colonic Tregs exhibit plasticity and co-express FoxP3 

and RORγt. The IL-17A in iTregs has been reported to 

control bacterial infections in the gut. During IBD, the lack 

of dietary fibers-derived SCFAs and dysbiosis can affect 
the iTreg differentiation and promote the differentiation 
of Th17 development in the gut. Conversely, segmented 

filamentous bacteria support Th17 differentiation via a 
circuitry mechanism involving intestinal epithelial cells and 

CD103-DCs. The IL-23 produced by these DCs promotes 

Th17 cell differentiation. The fungal infection (Candida 

albicans) or glucan-derived from other fungi can support 

the generation of Th17 cells (Fig. 2). 

Additionally, a high fat diet comprising of polyunsaturated 

fatty acids favors Th17 than iTreg differentiation. Both 
Tregs and Th17 cells in the gut express CCR6 and its 

ligand CCL20 is induced in the inflamed gut. Interestingly, 
we have shown that CCR6-CCL20 interaction drives the 

expression of RORγt and IL-17A into iTregs via the Akt-

mTOR-STAT3 pathway, suggesting that not only cytokine 

signaling but also chemokine receptor stimulation fine-
tunes the CD4+ T cell phenotype.109 The iTregs and/

or Th17 cells can acquire intermediate ‘Treg-Th17’ 

phenotype x` and exhibit reduced suppressive function. 

The conventional Th17 cells are thought to be protective 

in nature during homeostasis, nevertheless, they acquire 

Th1-like phenotype under the influence of IL-23 and IL-12. 
These Th17 cells either continue to co-express IL-17A and 

IFN-γ are known as Th1-like Th17 cells or may sometime 
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lose IL-17A expression and continue to express only IFN-γ 

is called exTh17-Th1 cells. IL-6, produced by the microbial 

stimulation or toll-like receptor 2 (TLR2) activation on APC, 

can inhibit the differentiation of Tregs in the STAT3 or IRF1-
dependent manner, respectively.113 Both Th1-like Th17 

and exTh17-Th1 cells are highly pathogenic in IBD. The 

blocking of IL-17A has completely failed to protect from 

IBD, which could be due to the acquisition of Th1-like Th17 

cells. The Th17 cells are also reported to lose RORγt and 

acquire c-Maf under the influence of TGF-β stimulation and 

produce IL-10 known as exTh17-Tr1 cells (Fig. 2). Such 

cells are reported to develop in the gut during homeostasis, 

however, their development and function during IBD are 

largely unknown.     

      

The chemokine receptors help in the recruitment of immune 

cells under the homeostatic and inflammatory conditions in 
the gut. Some of these chemokine receptors such as CCR2, 

CCR4, CCR5, CCR6, CCR7, CCR8, CCR10, CXCR4, 

CXCR5, and CXCR6 are expressed by the Th17 and Treg 

cells.149-152 Both in mice models and humans, Th17 cells 

have shown a very stable expression of CCR6 on most 

of the Th17 cell subsets.153-155 We showed that signaling 

from CCR6 promotes the pathogenicity of Th17 cells and 

also controls the plasticity of Tregs using Akt/mTOR/STAT3 

pathways in ulcerative colitis and gut inflammation.109, 156, 

157 The deficiency of CCR6 or blockade of CCR6 with anti-
CCR6 antibody is known to suppress the gut inflammation 
and autoimmunity.109, 153, 158 Newer biologics have been 

developed against CCR6 and its ligand CCL20 to control 

several autoimmune diseases.159-161 Sphingosine 1 

phosphate (S1P) is known to regulate the migration of cells 

from egress of cells in peripheral circulation and signaling 

from S1P receptor signaling also known to control the 

differentiation and function of Treg cells, endothelial 
permeability, angiogenesis and apoptosis.162-165 Ozanimod, 

a novel selective S1P receptor modulator, was tested in 

phase 2 trial as induction therapy in moderate to severe UC 

patients.166 The other oral formulation of small molecules 

that target S1P1 such as etrasimod and amiselimod are in 

the phase 2 clinical trial.122

The gut microbiota has a strong influence on IBD. A fecal 
microbiota transplantation (FMT), where an infusion of 

suspension of stool from a healthy person to the GI tract 

of IBD patients to cure the disease were tried and that are 

also known to influence the plasticity of Th17 and Treg 
cells.  In the IBD patients, FMT showed clinical benefits but 
was donor-dependent as well as recipient-dependent, and 

the effect was selective and transient.167-170 A multicenter 

trial involving 85 patients used an aggressive strategy 

of FMT via enema for 5 days a week for 8 weeks and 

achieved 27% steroid-free clinical remission of IBD with 

FMT as compared to 8% with placebo.171

There are several microRNAs known to control the plasticity 

of CD4 T cells.110 Recently, some specific microRNA 
such as miR-598 and miR-642 in the plasma was able to 

differentiate the CD from the UC.172 Some of the microRNAs, 

which are known to influence the differentiation of Th17 
and Treg cells, are found to be associated with IBD.173-176 

Identifying the microRNA that controls the pathogenicity 

and plasticity of Th17 cells and its association with IBD 

may assist in diagnosis of IBD and its classification. 

Conclusion

There are several causative agents that may contribute to 

the development of IBD, and to understand the contribution 

of each component such as genomics (~24,000 genes), 

transcriptomics (~105 RNA transcripts), proteomics 

(~106 proteins), metabolomics (~104 metabolites), 

exposomics (~108 compounds) and metagenomics (1014 

microorganisms) require a Systems Biology approach. 

The microbiota in the gut is very complex and have set of 

microorganisms that forms a network of food chain where 

products generated by one set of the microorganisms 

to be used by another set of microorganisms in the 

same microenvironment. The by-product or metabolites 

generated by each one of these sets of a complex group 

of organisms and its effect on the immune system are not 
clearly understood. Having a systems biology approach 

and complex bioinformatics tools to map the role of multi-

variable parameters in IBD may give a better understanding 

of the IBD pathogenesis and management. Thus, dynamic 

changes in the intestinal inflammatory milieu lead to the 
plasticity in the intestinal Tregs and Th17 cells. Uncovering 

the complexity residing with the plasticity of Tregs and 

Th17 cells will offer a better understanding of CD4+ T cells 

mediated pathogenesis of IBD. A better insight of epigenetic 

plasticity and reprogramming and factors that can oscillate 

these changes in the effector and regulatory CD4+ T cells 

may open a new door to design better strategies to control 

gut-inflammation and autoimmunity.
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